激光打标机基本原理.docx

上传人:b****7 文档编号:8977508 上传时间:2023-02-02 格式:DOCX 页数:16 大小:133.40KB
下载 相关 举报
激光打标机基本原理.docx_第1页
第1页 / 共16页
激光打标机基本原理.docx_第2页
第2页 / 共16页
激光打标机基本原理.docx_第3页
第3页 / 共16页
激光打标机基本原理.docx_第4页
第4页 / 共16页
激光打标机基本原理.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

激光打标机基本原理.docx

《激光打标机基本原理.docx》由会员分享,可在线阅读,更多相关《激光打标机基本原理.docx(16页珍藏版)》请在冰豆网上搜索。

激光打标机基本原理.docx

激光打标机基本原理

第一章激光器原理

可以肯定地说:

本世纪最后的伟大发明之一是激光技术。

它自一九五八年问世以来,已经逐步地然而是坚定地渗透到了科研、军事、工业等各个领域。

不是吗?

看看我们的周围,你就可以轻易地找到它应用的实例:

医院中的激光诊断及激光治疗机、商店中的条码识别器、办公室中的激光打印机、把我们与世界各地联结在一起的光纤等等,就是在我们的家中也有它的身影:

激光唱机、激光影碟机。

人类发明了多种多样的激光器。

诸如:

气体激光器(He-Ne激光器、CO2激光器等)、固态晶体激光器(红宝石激光器、钕玻璃激光器等)、离子激光器(氪离子激光器、氩离子激光器等)、染料激光器(甲酚紫激光器、萤光素激光器等)、超辐射激光器(氮分子激光器等)以及半导体激光器(砷化镓半导体二极管等)等等。

在世界的许多地方,几乎所有的商品激光器都在制造业中得到越来越广泛的应用。

CO2激光器的主要用途就是各类工业激光加工设备,作为固态晶体激光器的Nd:

YAG(掺钕钇铝石榴石)激光器的最大应用便是在激光打标领域。

1.1 激光原理

我们知道,物质是由原子组成的,而原子是由带正电的原子核和带负电的核外电子组成的(见图1.1)。

每一个电子都沿着自己特定的轨道绕原子核高速旋转,其旋转半径决定于电子所处的能级。

原子吸收能量后,电子的旋转半径会增加,电子的能级就会提高;原子释放能量后,电子的旋转半径会减小,电子的能级就会降低。

每个能级对应着一个特定的能量。

电子所具有的能量是不连续的,也就是说原子的能级是量子化的。

原子只有吸收了两个能级之间差值的能量才会提高一个能级,电子在能级之间的变动现象称为跃迁。

同样,当原子跃迁到较低能级时,会释放出两个能级之间差值的能量。

原子的最低能级为E0,高的能级依次为E1、E2、E3、……,高的能级称为上能级,低的能级为下能级。

处在能级E0的原子称为基态原子,其它能级称为激发态(见图1.2)。

原子可以吸收光子来获得能量,当然这个光子必须具有与原子能级差相等的能量(例如:

E1-E0)原子只能吸收带有几个能量的光子。

光子的能量决定于光子本身的波长。

所以,原子只能吸收几个特定波长的光子。

正常情况下,原子吸收能量后会在上能级停留一段时间(这一时间被称为原子的上能级寿命),然后向任意一个方向发射一个光子并返回基态。

这一现象称为原子的自发发射。

对这一现象,图1.3作了形象的描述。

图1.1原子的结构

图1.2原子的能级

若在激发态原子的附近,恰巧有一个光子经过,这个光子又恰好具有原子上下能级之差的能量,那么这个原子就有可能受到外来光子的激励而发出一个光子,原子自身则在发射后返回基态。

原子的这种因受到外来激励而发射的情况,称为原子的受激发射(图1.4)。

原子受激发射所放出的光子与外来的激励光子在能量、波长、相位等方面完全相同。

.

.

以上是单个原子能级的变化情况。

对于大量原子的情况,在通常条件下,大多数原子总是分布在基态上,其余原子总是从低能级到高能级递减分布。

这一分布规律就是通常所说的波尔兹曼分布。

在图1.5中,纵坐标表示原子的能级,横坐标表示在各能级上原子的分布数量。

如果我们加热这些原子,会使处于上能级的原子数量有所增加。

但不管如何加热这些原子,在原子群达到新的热平衡后,上能级的原子数量总是少于下能级的原子数量。

若我们想办法强迫下能级的原子跃迁到上能级,而同时保证上能级的原子不很快地发射而返回到下能级,就会人为地造成粒子数反转。

这时再用激励光子去激励上能级原子,使其产生受激

图1.5原子在各能级上的分布

发射。

在受激发射的同时,要设法使下能级的原子持续地跃迁到上能级,以维持粒子数反转,使受激发射能够持续地进行下去。

受激发射所产生的光子都具有相同的波长、方向及相位,所以受激发射的光是很强的。

这就是激光。

激光这个词是从英文原文“LASER”一词翻译过来的,它的完整的英文原文是“LightAmplificationbyStimulatedEmissionofRadiation”(光辐射受激发射放大),“LASER”是它的缩写。

简单地说:

激光器的实质是一个光放大器。

在实践中,要想产生激光,就必须满足两个条件:

首先找到能够实现粒子数反转的工作物质,也就是激光介质;第二要建立一个谐振腔,使某一个频率的能量源(可以是谐振腔外的,也可以是谐振腔内的)在腔内谐振,在激光介质中多次往返时,有足够的机会去激励(泵浦)处于粒子数反转状态

图1.6激光的产生示意图

的激光介质。

只有这样,才能产生激光。

这些受激发射的光子又去激发其它原子,一个变两个、两个变四个、四个变八个、……,产生连锁反应,光强被雪崩似地放大。

因而产生强烈的激光。

通常是在激光介质的两端各放置一个反射镜来组成谐振腔,以形成光学反馈。

它的作用是将那些沿介质长轴发射的光子反射回介质中。

两个反射镜中的一个被有意作成可以透过一个很小百分比的光强(在激光器中被称为前镜,相应的另外一个反射镜被称为后镜),这就是激光输出(见图1.6)。

 

1.2激光器原理

1.2.1Nd:

YAG激光器原理

Nd:

YAG激光器是固态晶体激光器的一种,它采用Nd:

YAG晶体棒作激光介质。

Nd:

YAG晶体是将激光介质钕(Nd)原子掺在生晶体钇铝石榴石(YAG)中,Nd原子在YAG中的最佳含量约为总重量的1%。

所以,Nd:

YAG晶体的全称是掺钕钇铝石榴石晶体。

Nd:

YAG晶体一般被制作成棒状,这种材料的制作是很困难的,且价格昂贵。

但由于它具有良好的光学性能、机械性能和热学性能,所以是高功率激光器的最佳选材之一。

之所以采用氪灯作为激励用的泵浦源,因为它可以发出波长为0.73μm和0.8μm的光线,用这一波长的光来激励Nd原子是最为有效的。

将Nd:

YAG晶体棒与氪灯并排放置在一个椭圆型的光学腔内,光学腔的内表面形状是经过精心设计的,以便保证氪灯发出的泵浦光能够全部聚集到Nd:

YAG晶体棒的中心轴上。

由一个反射率为100%的反射镜作后镜,前镜的反射率为精心设计的90%(透过率为10%),它们共同组成光学谐振腔,以实现光学谐振。

Nd(钕)原子的能量转移过程分为四步(在图1.7中对这一过程有详细

图1.7Nd:

YAG激光器原理图

的描述),第一步:

Nd原子在氪灯发出的波长为0.73μm和0.8μm泵浦光的激励下,处于基态的Nd原子跃迁到两个上能级中的一个,原子在这里的上能级寿命非常短,大约只有10-7秒,这里称这一能级为激发态;第二步:

原子在激发态迅速地进行一次无发射的跃迁,到达另一个上能级,原子在这里的上能级寿命较长,大约为10-4秒,这一能级称为亚稳态,原子在这里形成粒子数反转;第三步:

当原子在这里受激而跃迁到达下能级时,就会发射出波长为1.06μm的光子,这就是激光;第四步:

原子在这里再发生一次无发射的跃迁到达基态,准备重复上述过程。

1.2.2CO2激光器原理

CO2是三原子结构的线性分子,它有三种振动方式,如图1.8所示。

第一种叫做对称振动(如图1.8a所示),其对应的振动能量叫做对称振动能量,其能级相应地称为对称振动能级。

第二种叫做反对称振动(如图1.8b所示),其对应的振动能量叫做反对称振动能量,其能级相应地被称为反对称振动能级。

第三种叫做形变振动,又叫弯曲振动(如图1.8c及c,所示),这种振动有上下、前后两种形式,这种振动的能量叫做形变振动能量,能级被称为形变振动能级。

图1.8CO2分子的振动方式

CO2分子有几个上能级,其中只有一个上能级在跃迁时可以产生波长为10.6μm的激光,我们不妨把这一能级叫做激光能级(属于反对称振动能级)。

由于CO2分子的上能级寿命长,而且CO2激光器的激光能级与基态靠得很近,从而使它有高的效率、低的激励能量,并且很容易获得并积聚大量的受激分子,从而得到高功率、高效率的激光器。

建立CO2激光器能级间粒子数反转,把分子激发到高能级,一般有以下几个基本过程:

⒈电子直接激励:

放电中具有一定动能的电子同处于基态的CO2分子碰撞,把分子从基态直接激发到激光能级。

⒉串级跃迁:

处于比激光能级更高的其它反对称上能级也和基态能级有联系,因此动能较高的电子和基态的CO2分子相碰撞时,也能把分子激发到这些能级上去,在这些能级上的分子很容易跃迁到激光能级上来,这是因为它们都是反对称振动能级,而激光能级又是其中最低的一个。

在较高能级的分子是不稳定的,它们总是力图向较低能级跃迁,因此在激光能级就会积聚大量的粒子,这就是所谓串级跃迁。

⒊谐振碰撞:

处于更高反对称振动能级上的分子还可以通过与基态CO2分子的碰撞,把能量交给后者使其激发到激光能级,而自己成为低一级的反对称振动能级分子。

这一类碰撞是谐振的,发生的几率很大,对增加激光能级的粒子数有很大的贡献。

⒋复合过程:

在CO2分子放电过程中,有部分CO2分子分解为CO和O,同时也存在部分CO和O复合成CO2分子的过程,在它们复合时会把原来分解时吸收的能量放出,因此复合而成的CO2分子就会被这部分能量激发到激光能级。

以上这四种基本过程是CO2分子被激发到激光能级去的四条途径。

另外,为实现粒子数反转以便产生受激辐射,还必须抽空下能级。

CO2激光器按激励方式可分为横向激励激光器、气动激光器、化学激励激光器、射频激励激光器,等等。

第二章激光打标机的种类

一般地说,激光打标机是在计算机的控制下,使被打标的工件与激光束产生受控相对运动,激光束就会在工件表面烧蚀出需要的符号和图案。

显然,产生这种相对运动可以有两种方式:

一种是激光束固定,工件运动;还有一种是工件固定,激光束运动。

对于前一种方式,一般采用两维机械数控(或计算机控制)工作台拖动被打标工件,工件在工作台的拖动下按照事先设计好的轨迹运动,在固定不动的激光束的烧蚀作用下,工件表面就会留下永久的痕迹(见图2.1)。

这种打标方式我们称之为“工作台式”。

采用这种方式的打标机最大的优点是:

图2.1“工作台式”激光打标机的原理示意图

价格相对低廉,但受机械运动机构设计的限制打标速度慢,很难进行精细文字及图案的打标(若要实现精细打标,价格低廉的优点将不复存在,且非常困难),更无法对照片进行打标。

对于后一种方式,常用的有两种方法:

⒈利用两个联动的光学反射镜,使激光束发生偏折。

激光器射出的激光束照在第一面反射镜上,在水平方向折射90°后照射在第二反射镜上,第二反射镜使激光束向下反射通过聚焦透镜后在工件表面聚焦,该透镜与第二反射镜是固定在一起的。

第一反射镜沿激光器的轴线运动,运动时带动第二反射镜,第二反射镜沿反射后的激光束运动,这两个运动受计算机控制。

这两个运动的合成就是事先要求的标记图样的轨迹(见图2.2)。

这种打标方式我们称之为“绘图仪式”,因为它的工作方式类似于笔式绘图仪。

又由于在打标过程中,两个反射镜带着激光束做大范围的运动,就象激光束在飞来飞去,所以又有人称之为“飞行光学式”打标机。

与“工作台式”激光打标机相比,它的运动机构变得轻巧,构造更加简单,但由于在打标过程中激光光束的光程是不断变化的,最终作用在工件表面的光斑质量难以一致。

这种形式的激光打标机在不降低激光光斑能量密度的情况下,打标范围容易做得很大,但

图2.2“绘图仪式”激光打标机原理示意图

难以对精细图案进行打标,打标速度较慢。

⒉利用振镜扫描器使激光束发生偏转及运动。

由激光器射出的激光束顺序投射到第一、第二振镜扫描器上,它们分别使激光束在平面的X、Y两个方向上扫描,在计算机的控制下,激光束经聚焦透镜聚焦后就会在平面上扫描出所要求的图案(见图2.3)。

这种打标方式我们称之为“振镜扫描式”,它的最大优点是打标速度快,打标精细,可以处理各种精细文字、图案的打标,缺点是造价较高,很难扩大打标视场。

但由于它打标速度快,打标精细,已经成为激光打标机的主流产品。

图2.3“振镜扫描式”激光打标机工作原理示意图

激光打标机还可按照所选用的激光器类型来分类,诸如:

CO2激光打标机、Nd:

YAG激光打标机等等。

YAG系列激光打标机属于振镜扫描式Nd:

YAG打标机,它采用的是Nd:

YAG激光器。

该类打标机一般由激光器及电源、声光Q开关及驱动电源、振镜扫描器及驱动电源、光学系统、计算机控制系统、打标机专用D/A转换控制器、专用水循环制冷系统等组成;CO2系列激光打标机属于振镜扫描式CO2打标机,它采用的是射频激励CO2激光器。

该类打标机一般由激光器及电源、振镜扫描器及驱动电源、光学系统、计算机控制系统、风冷却或水循环系统等组成。

第三章激光输出的调制

3.1声光Q开关

对于采用Nd:

YAG激光器的JBJ系列激光打标机来说,声光Q开关是必不可少的。

它是通过在光学反馈路径上交替地开启和阻断光路来形成激光脉冲的一种设备。

“Q”是英文“Quality”(品质)的缩写,它的意思是指光学谐振腔中光学反馈的品质。

在激光打标系统中,声光Q开关经常作为附属光学器件加到光学谐振腔内。

声光Q开关由对激光束透明的材料(如水晶等)制成,它的侧面粘合了一个压电声学换能器,在该压电声学换能器上加有射频信号,该射频信号的频率被调制为1~50kHz。

当没有电信号时,Nd:

YAG晶体中发出的光束可以直接通过声光Q开关,被后反射镜反射后通过声光Q开关又回到晶体,Q开关不起作用。

当有信号加在声光换能器上时,换能器将产生声波,声波作用在水晶上而压迫水晶,这将使水晶的折射率发生变化,从Nd:

YAG晶体中发出的光在通过声光Q开关时将被折射而偏离后反射镜。

由于用于受激发射的光反馈消失了,激光产生的过程也就中断了(如图3.1所示)。

图3.1声光Q开关工作原理示意图

Nd是一种十分难得的优质激光介质,它的上能级寿命相对较长,达到了10-4秒。

当射频信号使Q开关破坏了光学谐振腔的谐振条件从而阻断激光输出时,它的内部仍然在吸收氪灯发出的光能而形成粒子数反转,由于较长的上能级寿命,受激原子不会很快回到下能级。

在没有激光输出期间,上能级积聚了极大的能量,当射频信号一旦取消而恢复光学反馈时,将会产生数千瓦的激光峰值功率输出。

Q开关为在功率较低的激光器上产生高峰值功率短脉宽的激光脉冲提供了极好的方法。

YAG系列激光打标机采用的声光Q开关是由熔石英制成的,采用LiNbo3单晶作压电声学换能器。

为了提高声光Q开关对Nd:

YAG激光的透过率,在熔石英的两个通光面表面镀1.06μm硬增透膜。

3.2激光脉冲控制器

对于采用射频激励CO2激光器的CO2系列激光打标机来说,有没有激光脉冲控制器似乎都可以对工件进行打标加工。

但实践证明,加有激光脉冲控制器的激光打标机打标质量明显提高,对材料的适应能力也更好,更能够满足激光打标加工的要求。

脉冲控制器的工作原理与声光Q开关完全不同,它是用一组电脉冲信号直接控制激光电源,从而改变激光器的输出波形。

达到缩小激光束输出的辐射方向以及大幅度增加激光输出的峰值功率的目的。

它的工作原理见图3.2。

图3.2激光脉冲控制器工作原理

第四章供电及冷却系统

无论是采用Nd:

YAG激光器的YAG系列激光打标机,还是采用CO2激光器的CO2系列激光打标机,供电及冷却系统都是少不了的。

Nd:

YAG激光器所用的泵浦源氪灯,CO2激光器的激光管都需要一个稳定、可靠的直流电源,电源的稳定性直接影响激光输出的稳定性。

Nd:

YAG激光器所用的电源还必须包括一个能产生高压启动脉冲的点燃电路,以引燃氪灯。

大恒激光生产的激光打标机均采用IGBT开关电源,由于设计合理、制作精良,保证了电源的稳定性和可靠性。

Nd:

YAG激光器所用的泵浦源──大功率氪灯,在发光过程中会产生大量的热;CO2激光器在工作时同样会产生一定的热量(虽然不如Nd:

YAG激光器产生的热量多)。

若不及时将这些热量去掉,不仅会影响激光器的正常使用和缩短氪灯的使用寿命,更为严重的是将会发生炸腔或损坏CO2激光管的恶性事故,使昂贵的Nd:

YAG晶体棒及镀金腔或CO2激光器报废。

施加于声光Q开关上的射频信号,被压电晶体吸收后,一部分能量转变成超声波,还有一部分变成热;尽管Q开关中的熔石英晶体对激光是透明的,但还会吸收一部分光能,这些能量转变为热。

这些热量会烧坏压电换能器的电极,烧坏压电换能器,甚至会烧坏熔石英晶体。

去除热量的最有效的方法是加装一套水循环装置,靠水的循环来带走热量。

对于Nd:

YAG激光器,由于氪灯表面的温度很高,必须考虑不使氪灯表面结垢;冷却水直接流过氪灯表面,水必须有很高的透明度;氪灯的电极上加有高压,水必须有较高的电阻率。

所以必须采用去离子水。

对于CO2激光器,冷却水采用普通水就可以了。

为了节省宝贵的水资源,冷却水(不管是去离子水还是普通水)应该循环使用,一般的做法是采用一套二次冷却装置,以带走冷却水所带出的热量,一般是采用外接普通水源的办法。

由于采用CO2激光器的激光打标机所产生的热量较小,二次冷却多采用风冷却的方式。

 

第五章光学系统

没有光学系统,激光打标机是无法正常工作的。

针对激光打标机工作方式的不同,光学系统也是各式各样的,当他们都包括扩束镜(使激光器发出的激光束直径变大并缩小激光束的发散角)、光学聚焦透镜(使作用在工件表面的激光光斑直径尽可能变小)和反射镜(用以改变激光束的方向)。

一个70W的连续激光器所发出的光能与一个70W的普通灯泡所发出的光能是差不多的。

普通灯泡是被设计为用来照明的,它发出的光线是向四面八方照射的,与灯泡不同的是激光器发出的光线集中在一个很小的范围。

所以激光的能量密度(单位面积上的能量)远远大于灯泡的能量密度,实际的打标效果决定于工件表面所承受的能量密度,而不是激光的功率。

为了能够很好地进行激光打标,必须进一步提高激光的能量密度。

这有两个方法:

一个是提高激光器的激光输出功率,一般地说这是困难或得不偿失的;还有一个方法是将激光器发出的激光束进一步变细,这需要一套光学系统。

使激光束变细是很简单的,只需有一个聚焦透镜将激光束聚焦到一个很小的点。

激光器发出的激光并不是理想的平行光,它有一个很小的发散角,这一很小的发散角会影响到聚焦透镜的聚焦效果。

所以在聚焦透镜之前要有一个扩束镜用以压低光束的发散角。

扩束镜除了可以压低光束的发散角外,还可以扩大激光输出光束的直径。

我们知道,聚焦后光斑的大小取决于入射光束直径和聚焦透镜的焦距:

入射光束直径越大,聚焦后光斑直径越小。

入射光束直径的增大,还可以降低激光光路中使激光光束改变方向的反射镜上的激光能量密度,保证了反射镜在长时间工作时不被激光束烧坏。

按照聚焦透镜在光路中相对于反射镜所处的位置,可以分为前聚焦和后聚焦两种方式。

下面我们以振镜扫描式激光打标机为例来介绍激光打标机的光学系统。

5.1前聚焦方式

图5.1前聚焦方式示意图

前聚焦方式是因聚焦透镜比反射镜更靠近激光器(处在反射镜的前面)而得名。

聚焦透镜安装在扩束镜和振镜扫描器之间(见图5.1),它的最大优点是价格较为低廉、且可获得较大的打标范围。

这一方式的主要缺点是:

光斑直径较大,这是由于前聚焦方式选用的聚焦透镜的焦距较长,而聚焦光斑的直径与聚焦镜的焦距成正比,这是为了容纳振镜扫描器,聚焦透镜不得不采用较大的焦距,由此导致打标的能量密度降低。

另外,前聚焦方式只能选用普通聚焦透镜,这种透镜的焦点位置是镜头后方的一个圆弧面,而多数情况下工件表面是一个平面,当光束由打标区域的中心移至边缘时,焦点将位于工件平面的上面,工件表面上光斑直径和能量密度将动态地发生变化。

另外,当反射镜偏转同一角度时,打标位置分别处于视场中央和边缘时,激光光斑的位置变化是不一致的。

以上这些不足都将影响最终的打标的效果。

对于采用CO2激光器的激光打标机,由于激光波长较长,聚焦透镜的焦深(当工件平面在镜头焦平面前后移动,肉眼难以辨别打标效果差别的最大范围)较大,为了得到较大的打标工作范围,多采用前聚焦方式。

 

5.2后聚焦方式

顾名思义,与前聚焦方式不同的是,后聚焦方式将聚焦透镜安装在振镜扫描器的后面(见图5.2)。

这就避免了前聚焦方式的缺点。

它采用的聚焦透镜是专门设计的F-θ平场透镜,不管光束如何移动,它的焦点位置始终保持在一个平面上,保证了在打标区域内光斑大小及能量密度的一致,并且当反射

图5.2后聚焦方式示意图

镜偏转单位角度时,对应的焦平面上激光光斑的几何位移是处处一致的。

这些都保障了打标的质量的提高。

另外,这种方式使更换聚焦透镜变得很简单,可以根据打标范围的大小和具体要求随时更换聚焦透镜。

它的缺点是价格较高,打标范围相对较小(但可以通过更换透镜来增大打标范围)。

由于这种方式可以获得高质量的打标效果,大多数采用Nd:

YAG激光器的振镜扫描式激光打标机均采用这种聚焦方式。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 教育学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1