圆柱的表面积说课稿.docx
《圆柱的表面积说课稿.docx》由会员分享,可在线阅读,更多相关《圆柱的表面积说课稿.docx(10页珍藏版)》请在冰豆网上搜索。
圆柱的表面积说课稿
圆柱的表面积说课稿
圆柱的表面积说课稿1
一、教材分析
《圆柱的表面积》是九年义务教材六年制第十二册第三单元的教学内容,是在学生认识了圆柱的特征,能看懂圆柱的平面图,认识圆柱的侧面展开图的基础上,进行教学的。
从教材上看,教材先安排理解圆柱的侧面展开图的认识,然后圆柱的侧面和展开图的比较,认识到圆柱的侧面,就是它的长方形。
还要会计算圆柱的侧面积。
通过圆柱的侧面展开图让学生观察图形,发展学生的空间观念;思考圆柱的表面积,就是由圆柱的侧面积加上两个圆的面积。
通过侧面展开图的操作,学生了解了圆柱的侧面积相当于长方形面积。
长方形的长就是圆柱底面周长,长方形的宽相当于圆柱的高。
使学生理解和掌握圆柱的表面积是由哪几部分组成的(一个侧面积加上两个底面积),求表面积,要先求侧面积,再求圆的面积。
这也就突出了重点。
难点就是理解表面积的计算后,能够解决现实生活中的实际问题。
关键是通过对圆柱侧面展开图的认识,培养了学生的空间想象能力、概括思维能力、分析综合等数学能力。
二、教学程序
为了充分体现教师的主导和学生的主体作用,能让学生积
极主动、生动活泼地参与到教学过程中来,我设计了复习旧知、实验导课;沟通知识、探索新知;应用求表面积、解决问题;巩固练习、逐步深化。
1、复习旧知、实验导课。
(1)指名学生说出圆柱的特征。
(2)口头回答问题:
A、一个圆形花池,直径是5米,周长是多少?
B、长方形的面积怎样计算?
(3)通过上节课认识了圆柱,圆柱的侧面展开图是一个长方形。
这个长方形与圆柱有关系吗?
圆柱的侧面积怎样计算呢?
今天我们就来学习有关圆柱的侧面积和表面积的计算。
2、沟通知识、探索新知。
(1)理解表面积的含义。
(2)动手操作寻找计算圆柱表面积,计算公式。
A、学生通过看展开图后,知道圆柱的表面积是由圆柱的侧面积加上两个底面积得到的。
B、学生通过看展开图知道圆柱的侧面积就等于这个长方形的面积,让同学们找出它们的对应关系后,然后同学们自己动手计算圆柱的侧面积。
C、分析圆柱的表面积又是由哪几个部分组成的。
同学们认识到圆柱的表面积是由上、下两个底面和侧面组成。
通过课件侧面展开图,找出这个图中长方形的长和宽、圆柱底面积是如何求的。
让同学们自己讨论计算结果。
3、应用求表面积、解决问题。
出示例3,让同学们找出这题已知什么?
求什么?
具体分析
水桶是无盖,说明什么?
如果这个水桶展开,会有哪几个部分?
让同学们自己动手做。
4、巩固练习、逐步深化。
做41页“做一做”1、2题。
5、完成作业、强化新知。
练习十第2、3、4、5题。
三、说教法
课堂采用了多种教学方法,但主要通过实验法、练习法、
启发谈话法、课件来完成教学目的。
1、课堂首先通过启发谈话导入新课,解答例题运用启发式教学和练习法。
2、通过侧面展开图的实验,使学生发现圆柱的侧面展开图,就是一个长方形,求出长方形的面积,圆柱的侧面积也就算出来了。
3、教学例题,都让同学们自己讨论、分析、解答。
四、说学法
实验操作,每个同学通过自己动手做侧面展开图分析圆柱
的表面积,直观感受到圆柱的侧面积与这个长方形的关系,为下一步计算表面积,发展了学生的空间想象能力。
1、由直观演示,让同学自己动手计算圆柱的侧面积,然后联系到圆柱的表面积的计算,分几进行。
2、通过实验直观了解,解决生活中的实际问题。
圆柱的表面积说课稿2
一、说教材
(一)教学内容
《圆柱的表面积》是九年义务教育小学数学六年级下册(人教版)第21~22页例3例4,第22页“练一练”,练习六第1~3题的教学内容。
(二)教材分析
这部分内容是在学生已经探索并掌握圆柱的基本特征的基础上教学的。
同时,此前对圆面积公式的探索以及对长方体特征和表面积计算方法的探索也为了学习本课内容奠定了知识的基础。
通过本节课的学习,有利于学生进一步完善关于几何形体的知识结构,丰富学生“空间与图形”的学习经验,形成初步的空间观念,为今后进一步学习形体知识打下基础。
教材设置了两个例题。
例3主要引导学生通过动手操作探索圆柱侧面积的计算方法。
然后,通过相应的“练一练”对圆柱侧面积的计算方法进行巩固。
例4是引导学生在例3的基础上探索圆柱表面积的计算方法。
教材这样安排,意在让学生经历圆柱侧面积、表面积计算方法的推导过程,理解这些方法的________,便于学生在理解的基础上记忆,并从中学到一些数学方法。
(三)教学重、难点本节课的教学重点是掌握圆柱的侧面积、表面积的计算方法,难点是理解圆柱侧面积的含义。
(四)教学目标根据本节课教学内容以及学生的特点,我制定了本课节的教学目标如下:
1、知识目标:
理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积、表面积的计算方法,能利用所学知识解决相关的一些简单实际问题。
2、能力目标:
初步学会运用“观察、比较、分析、抽象、判断、概括、推理”等方法获得知识的能力。
3、情感目标:
让学生通过自己的操作,观察、比较、推理、归纳等经历知识形成的过程,从而获得成功的喜悦,增强学生的学习兴趣和自信心。
二、说教法和学法
小学生知识的形成总是经历由感性认识到理情认识的过程,因此教师在教学新知识时,应尽量为学生提供充足的、较为完整的感性材料,通过让学生操作、观察、演算等途径,调动眼、口、手、脑、耳等多种感官参与知识活动。
基于这样的认识,这节课我采用演示法、操作实验法、引导发现法、练习法等教学方法,让学生通过操作、观察、概括、归纳、演算、交流等多种方法进行学习,掌握求圆柱表面积的计算方法及应用计算方法解决实际问题。
三、说教学过程
(一)操作导入,建立新旧知识联系点。
学生以前学的面都是“平面”,而圆柱的侧面是“曲面”,是本课教学难点,为了突破这个难点,这个环节我分3步进行教学。
1、卷一卷,感知“由直变曲”。
首先,我让学生拿出事先准备好的长方形纸片,引导他们卷成尽可能粗的圆柱纸简。
其次,提问:
原来长方形纸片是一个平面;现在卷成圆柱纸简后,它还是平面吗?
让学生感知“由直变曲”。
然后,我根据学生回答谈话:
在一定的条件下平面是可以“由直变曲”的
2、展一展,感知“由曲变直”。
首先,我让学生展开卷好的圆柱简。
其次,提问:
这个尽可能粗的圆柱纸简展开后是什么形状?
让学生感知“由曲变直”。
然后,谈话:
同样,在一定条件下曲面也可以“由曲变直”变为平面。
3、谈话引入:
今天我们将运用这个知识来计算圆柱的侧面积与表面积。
(板书课题:
圆柱的表面积)
通过这个环节的卷、展操作,让学生感知圆柱的侧面“由曲变直”的过程,使得“圆柱侧面积”的新知识与“求长方形面积”的旧知识联系起,突破了教学的难点。
(二)观察对比,推导圆柱侧面积计算公式。
这个环节,我将分两步进行教学
1、观察对比,理解圆柱侧面积含义
首先,我让学生再次卷出尽可能粗的圆柱纸简。
其次,提问引导学生观察对比。
(1)原来长方形纸片的长现在在么地方?
宽呢?
现在长方形纸片卷成圆柱简后变成圆柱的什么面?
并且根据学生回答板书。
长方形长宽
圆柱侧面表面周长高
(2)谁能指出这个圆柱简的两个表面?
(现在是空的)
圆柱的.表面积说课稿3
一、教材分析:
圆柱表面积的计算是九年义务教育六年制小学数学第十二册第二单元的学习内容,应当在学生掌握了长方形以及圆的面积计算的基础上进行教学。
这部分内容的学习为后面学习一些立体几何知识打下基础。
二、教学目标:
根据《数学课程标准》的理念学生的学习目标应将知识与技能、过程与方法、情感态度与价值观这三方面融为一体,为了落实这几点,本节课我们的教学目标制定如下:
1、知识与技能。
通过想象和操作等活动,加深对圆柱特征的认识,理解圆柱表面积的的含义,知道圆柱的侧面展开后可以是一个长方形。
2、过程与方法。
学生通过触摸、观察、操作等多种方法提高分析、概括的能力,理解空间观念,并能利用知识合理灵活地分析、解决实际问题。
结合具体的情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。
3、情感态度与价值观
让学生亲身体验到数学活动充满着探索性和挑战性,通过自主探索和合作交流,使他们敢于发表自己的见解,能够从交流中获益。
通过学生们自己的认识来制定教学目标符合学生学习数学的认知规律,让他们亲身经历问题的解决过程,提高他们对问题的感性认识,经过一系列的实践和计算,提高他们对问题的理性认识。
能根据具体情境,灵活运用圆柱表面积的计算方法解决生活中的一些简单的实际问题,体会数学与生活的联系;培养学生的观察、操作、想象能力,发展学生的空间观念,渗透转化的思想。
也可以培养学生良好的个性品质,包括大胆猜想勇于探索的创新精神,顽强的学习毅力等。
三、教学重点与难点:
圆柱体的侧面积和表面积在本课教材中占重要地位,它们是学习其它几何知识的基础。
所以本课的重点是:
探索圆柱体侧面积、表面积的计算方法,并能运用圆柱侧面积和表面积的计算方法解决生活中的一些简单的实际问题。
由于圆柱体的侧面积计算较为抽象,加之学生的空间想象力不够丰富,所以本课的难点是:
理解圆柱侧面展开的多样性,将展开图与圆柱的各部分联系起来,并推导出圆柱体侧面积和表面积的计算公式。
而解决这一难点的关键是:
把圆柱体的侧面展开后所得到的长方形各部分同圆柱体各部分间的关系。
四、教学目标:
为了更好的突出重点突破难点并遵循学生为主体,教师为主导的教学原则,要按照学生从感性认识到理性认识、从特殊到一般的认识规律,遵循启发式引导学生展开思维、探究证明思路、循序渐进的教学方法,最大限度提高学生的参与率。
这样的教学方法主要是让学生主动、自觉地学习,让他们在学习中学会学习,这实际上式交给了学生自由飞翔的翅膀,交给了他们点石成金的金指头。
五、学习方法:
在本课的学习活动中注重培养学生的空间观念、想象力、动手操作能力、探索能力和推理概括能力。
所以学生的学法以学生自备的圆柱形纸盒、长方形纸、剪刀等学具为载体,在老师的引导下进行学习活动。
学习活动以小组共同探索、交流讨论、合作学习为主要形式,教师适时进行点拨,创设平等、自主、和谐的教学环境,通过学生的动手操作、观察、比较、推理、概括等充分调动学生多种感官的参与,让学生全面参与新知的发生、发展和形成过程,并学会操作、观察、比较、分析和概括,学会想象,学会与人交往。
在活动中获得成功的体验,从而培养学生学习数学的兴趣,得到人人学有价值的数学这个目的。
六、教学过程:
在我们的课堂教学中我们应以学生的发展为本,以学生的活动为主线,让学生充分的参与到课堂活动中来,为了落实这几点,我按以下四个阶段完成本课。
(一)温故而引新,巧妙入境。
这个过程我展示3个方面的复习内容:
(1)我知道圆柱的特征是
(2)圆的周长怎样计算?
圆的面积又是怎样计算的呢?
说一说,并用字母表示出来。
(3)你知道长方形的面积怎样计算吗?
以上设计让学生逐题完成,通过个人汇报集体评价的形式来进行。
让学生在复习中进一步掌握圆柱的特征,回顾圆的周长和面积的计算方法及长方形的面积的计算方法。
这些知识完全与圆柱的侧面积和表面积的计算有关,为下一步探索圆柱的侧面积和表面积计算方法作好铺垫,同时也让学生领会到新旧知识之间的联系,充分体现数学知识的前后连贯性。
(二)设置悬念,创设探究情境,激发学生的探究欲望,引出本课的探究主题。
在此我用富有激励性的语言来引导学生:
请你拿出自己准备的圆柱形纸盒,这是我给大家准备的一个模型,现在我请大家帮助我设计一个你手中的模型一样的圆柱形纸盒,你能告诉我你需要多大面积的纸吗?
(让学生沉思一会儿后请学生起来汇报,发表自己的意见,根据学生的回答,慢慢引导学生理解这实际上是求圆柱的表面积,然后引导学生分别说一说自己对圆柱表面积的认识。
)
你知道圆柱的表面积指的是什么吗?
(这样通过说一说让学生理解圆柱的表面积的含义,进而引出新课,揭示课题。
)
这就是我们今天研究的主题《圆柱的表面积》。
这样设计让学生明白探究的必要性,让学生明确探究目的和探究方向,同时又具有挑战性,能激发学生的探究兴趣。
(三)动手操作,合作研究,汇报交流,发现联系,总结方法。
1、动手操作。
你知道圆柱的侧面是个什么面吗?
你能想办法让它成为我们认识的图形吗?
请你用手中的长方形纸、剪刀动手做一做,试试看。
让学生自己动手进行尝试,教师进行巡视、引导和点拨,通过学生动手将圆柱的侧面展开成平面图形的过程(比如让学生想办法把圆柱的侧面展开,或者用长方形纸卷成一个圆柱的侧面,或用大卷的塑料胶带做演示),来感受化曲为直的思想,获得直观的感受。
2、合作研究。
如果沿着圆柱的一条高把圆柱的侧面展开,会得到什么图形呢?
请你和你的同伴说说看。
3、汇报交流。
让学生把自己的展开结果展示给大家看。
4、进行推理,总结方法。
引导学生通过测量圆柱底面周长和侧面展开后得到的长方形的长或用彩色笔做记号的方法,让学生自己分析出圆柱的底面周长和侧面展开成的长方形的长之间的关系。
然后引导学生进行概括总结:
你知道长方形的面积怎样计算吗?
那么圆柱的侧面积又是怎样计算的呢?
因为有了上述的探究过程,学生很自然而然的就会概括出圆柱的侧面积的计算方法:
底面周长乘高,也就是圆的周长乘高。
学生概括出公式以后让学生写下来,并读一读,用黑板展示出来。
然后让学生思考:
要求圆柱的侧面积需要知道哪些条件呢?
引出例1:
已知一个圆柱的底面直径是0.5m,高是1.8m,求它的侧面积。
(得数保留两位小数)
5、归纳新知。
你现在知道怎样求圆柱的表面积了吗?
先自己写出你的研究结果,再和同伴交流交流,然后向大家展示你的成果,让大家分享你的成功
通过独立思考同伴交流全班汇报总结公式来完成。
(这一环节,使学生动手、动口、动脑等多种感官参与活动,做到了在动手操作中发现,在合作中学习,在交流中成长,这样能够更好的突破难点。
)完成后让学生动手根据自己探究的结果完成例2、
6、联系生活,巩固练习,培养能力。
这一环节是巩固内化空间基础知识,培养拓展空间思维,形成学生对空间的感受能力,学习关于空间几何一些简单知识点的重要环节。
因而我设计的练习题在注重知识运用的前提下,注意联系学生的生活实际,使学生能够把所学的知识运用于解决生活中的实际问题中。
让他们感受到数学与生活的紧密联系数学________于生活又作用于生活。
这一过程我安排了课本上例3.让学生学会用数学知识解决生活中的实际问题,同时让学生明白在实际生活中计算圆柱的表面积时要具体问题具体分析,要结合实际进行计算,讲解进一法的意义和使用范围。
(四)全课总结,促进构建。
这是作为新课必要的一个环节,通过学生自己总结和评价,既加深了学生对新知识的理解和消化,又让学生体验到学习数学的价值和兴趣。
结合板书,让学生说说本课学到的知识,并说出是怎样学到的。
这一环节的目的是让学生对本课所学的知识有系统的认识,培养学生整理知识的能力,引导学生总结学习方法,达到学会学习的目的。
圆柱的表面积说课稿4
教学内容:
九年义务教育六年制小学数学第12册33~34页例1、例2、例3的“做一做”及练习七的第2~5题。
教学目标:
1、知识目标:
理解圆柱的侧面积和表面积的含义;掌握圆柱的侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积。
2、能力目标:
能灵活运用求表面积、侧面积的有关知识解决一些实际问题。
3、德育目标:
渗透事物之间联系的辩证唯物主义观点,使学生感悟到数学知识内在联系的逻辑之美,增强审美意识。
教学重点:
理解求表面积、侧面积的计算方法,并能正确进行计算。
教学难点:
能灵活运用表面积、侧面积的有关知识解决实际问题。
教学设想:
本课是在学生认识了圆柱,学习了圆、长方形等几何图形的基础上进行的。
通过学习可以发展学生的观念,提高学生解决实际问题的能力。
并为以后学习圆柱的体积计算打下良好的基础。
本节课由于学生缺乏空间想象能力,计算繁琐,易使学生感到枯燥无味。
因此,我在教学中充分调动学生的积极主动性,让学生在自主动手操作中发现问题,自主探索解决问题的途径以解决所遇到的数学问题。
遵循学生的认知规律,组织合理有效的教学程序
(1)抓住关键,动手操作,突破难点
圆柱的表面积等于侧面积加两个底面积的和,圆柱的底面是两个相等的圆。
对于圆面积的计算是学生已有的知识,学生以前学过的面都是“平面”而圆柱的侧面却是个“曲面”。
怎么样才能求出这个“曲面”的面积就成了圆柱表面积教学过程中的难点。
于是让圆柱的侧面“由曲变直”,使新知识在一定的条件下统一起来就成了一个关键性的问题。
通过教具演示,把侧面展开可以使侧面“由曲变直”,但学生缺乏这方面的生活经验,接受起来思维障碍较大。
所以我反其道而行之,采用实验法,让学生卷一卷、分一分,把一张长方形的纸卷成一个尽可能粗的圆柱形的纸筒。
使学生在操作的过程中感知:
在一定的条件下,平面也可以“由直变曲”,那么反过来曲面当然也可以“由曲变直”。
又经过引导学生观察、比较,讨论长方形纸的长和宽与用它卷成的圆柱形纸筒的底面周长和高的关系,学生认识圆柱的侧面已经水到渠成,得到圆柱的侧面积等于底面周长乘以高。
这样抓住新旧知识内在联系,安排学生动手操作,引导学生在发现问题后及时动脑思考,不仅激发学生兴趣,同时也促进了学生思维能力的发展。
(2)及时练习,巩固提高,形成能力
学生的能力主要表现在获取知识和应用知识的过程中。
求圆柱
侧面积,由于已知条件的不同,有多种不同的计算方法,但用圆柱的底面周长乘以高是最直接的方法,通过练习处理好新知识与旧知识的结合,解决好已有技能在新情况下的运用,将对培养学生分析综合的能力,减轻学生的记忆负担起重要作用。
因此,我在引导学生推导出圆柱侧面积的计算方法之后,及时安排了练习,使学生通过练习牢固掌握求圆柱侧面积的基本方法。
对于题中没有直接告诉底面周长的,并没有一一进行方法的指导,只需把基本方法加以推广,知道如果没有直接告诉底面周长时,应用已知底面直径(或半径)求周长的方法,先求出底面周长,然后再求侧面积就可以了。
这样就提高了学生运用基本数学知识灵活解决实际问题的能力,并减轻了学生学习中不必要的记忆负担。
这一点既减轻学生过重负担又提高课堂教学效率。
(3)通过讨论,多向交流,培养独立思考能力
为提高课堂教学效率,培养学生能力,我在教学中注意研究如
何引导学生独立钻研问题。
对于课本上的例题,可以提供给学生作为讨论和思考的材料,都尽量让学生独立去探讨。
因此,教学时提出了“除了侧面外圆柱还有几个面?
”“什么叫做圆柱的表面积?
”“怎么样求圆柱的表面积?
”等三个问题让学生分组讨论,进行独立的探索。
在“怎么样求圆柱的表面积?
”这个问题时,有的同学得出圆柱的表面积等于侧面积加上两个底面积;有的同学则会联系圆的面积公式推导过程,把圆柱的两个底面分成若干个小扇形后拼成一个与侧面同长的长方形,然后与侧面再拼成一个大长方形,那么整个圆柱的表面积=底面周长×(圆柱的高+底面半径),用字母表示即S=2лr×(h+r)。
这样学生不仅亲自参与了对新知的探索使知识掌握得更加牢固,还对旧知进行再创造并萌发了创新意识,培养了学生的创新思维和创新能力。
(4)联系生活,迁移知识,感悟生活数学乐趣
小学数学的教学内容绝大多数可以联系学生的生活实际,教师应找准每节教材内容与学生生活实际的“切入点”,调动学生学习数学的兴趣和参与的积极性。
所以在教完例2后,我让学生举例说出日常生活中,哪些物体是没有两个底面的圆柱体。
出示例3让学生认真审题,并说水桶有几个面,再计算出用了多少材料,学生计算完后,要求得数保留整百平方厘米。
启发学生看书发现新问题,讨论计算使用材料取近似值时,要用“四舍五入”法还是用“进一法”。
从而使学生理解“进一法”的意义。
接着出示拓展延伸练习:
制作一个高1.5米,直径0.2米的圆柱形烟囱,需要多少平方米铁皮?
最后让每一位学生小组合作制作一个圆柱体水桶并评选出最佳作品展示。
课堂小结后,我提出“大家想一想,还有什么办法能求出计算圆柱体的表面积?
”(例如,可以把圆柱切开,拼成近似的长方体,由长方体的表面积计算公式推导出圆柱的表面积计算公式)这个问题让学生知道了解决问题的方法是多种的,也有利于挖掘优生的潜能,还能为求圆柱的体积埋下伏笔。
总而言之,这节课充分调动了学生的手、眼、口、脑,借助学具让学生动手去实践,动脑去想,发现问题,解决问题。