数学高考知识点最新归纳5篇.docx
《数学高考知识点最新归纳5篇.docx》由会员分享,可在线阅读,更多相关《数学高考知识点最新归纳5篇.docx(5页珍藏版)》请在冰豆网上搜索。
数学高考知识点最新归纳5篇
数学高考知识点2020最新归纳【5篇】
数学这个科目一直是同学们又爱又恨的科目,学的好的同学靠它来与其它同学拉开分数,学的差的同学则在数学上失分很多;在平时的学习和考试中同学们要善于总结知识点,这样有助于帮助同学们学好数学。
下面就是给大家带来的数学高考知识点总结,希望能帮助到大家!
数学高考知识点总结1
1、基本概念:
(1)必然事件:
在条件S下,一定会发生的事件,叫相对于条件S的必然事件;
(2)不可能事件:
在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;
(3)确定事件:
必然事件和不可能事件统称为相对于条件S的确定事件;
(4)随机事件:
在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;
(5)频数与频率:
在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例
fn(A)=为事件A出现的概率:
对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。
(6)频率与概率的区别与联系:
随机事件的频率,指此事件发生的次数nA与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。
频率在大量重复试验的前提下可以近似地作为这个事件的概率
3.1.3概率的基本性质
1、基本概念:
(1)事件的包含、并事件、交事件、相等事件
(2)若A∩B为不可能事件,即A∩B=ф,那么称事件A与事件B互斥;
(3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件;
(4)当事件A与B互斥时,满足加法公式:
P(A∪B)=P(A)+P(B);若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)
2、概率的基本性质:
1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;
2)当事件A与B互斥时,满足加法公式:
P(A∪B)=P(A)+P(B);
3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);
4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:
(1)事件A发生且事件B不发生;
(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形;
(1)事件A发生B不发生;
(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。
数学高考知识点总结2
1、柱、锥、台、球的结构特征
(1)棱柱:
定义:
有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:
以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:
用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱
几何特征:
两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥
定义:
有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体
分类:
以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:
用各顶点字母,如五棱锥
几何特征:
侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:
定义:
用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分
分类:
以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:
用各顶点字母,如五棱台
几何特征:
①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
(4)圆柱:
定义:
以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体
几何特征:
①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:
定义:
以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体
几何特征:
①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:
定义:
用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:
①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:
定义:
以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:
①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图
定义三视图:
正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)
注:
正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
数学高考知识点总结3
(1)不等关系
感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。
(2)一元二次不等式
①经历从实际情境中抽象出一元二次不等式模型的过程。
②通过函数图象了解一元二次不等式与相应函数、方程的联系。
③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。
(3)二元一次不等式组与简单线性规划问题
①从实际情境中抽象出二元一次不等式组。
②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。
③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。
(4)基本不等式:
。
①探索并了解基本不等式的证明过程。
②会用基本不等式解决简单的(小)值问题。
数学高考知识点总结4
(1)直线与平面平行的判定及其性质
线面平行的判定定理:
平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
线线平行线面平行
线面平行的性质定理:
如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,
那么这条直线和交线平行。
线面平行线线平行
(2)平面与平面平行的判定及其性质
两个平面平行的判定定理
(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行
(线面平行→面面平行),
(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。
(线线平行→面面平行),
(3)垂直于同一条直线的两个平面平行,
两个平面平行的性质定理
(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。
(面面平行→线面平行)
(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。
(面面平行→线线平行)
数学高考知识点总结5
1.不等式的定义
在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.
2.比较两个实数的大小
两个实数的大小是用实数的运算性质来定义的,
有a-b0?
;a-b=0?
;a-b0?
.
另外,若b0,则有1?
;=1?
;1?
.
概括为:
作差法,作商法,中间量法等.
3.不等式的性质
(1)对称性:
ab?
;
(2)传递性:
ab,bc?
;
(3)可加性:
ab?
a+cb+c,ab,cd?
a+cb+d;
(4)可乘性:
ab,c0?
acbc;ab0,cd0?
;
(5)可乘方:
ab0?
(n∈N,n≥2);
(6)可开方:
ab0?
(n∈N,n≥2).
复习指导
1.“一个技巧”作差法变形的技巧:
作差法中变形是关键,常进行因式分解或配方.
2.“一种方法”待定系数法:
求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.
3.“两条常用性质”
(1)倒数性质:
①ab,ab0?
;②a0
③ab0,0;④0
(2)若ab0,m0,则
①真分数的性质:
;(b-m0);
②假分数的性质:
;(b-m0).
数学高考知识点2020最新归纳【5篇】