数学建模部分概念 期末复习.docx

上传人:b****3 文档编号:844782 上传时间:2022-10-13 格式:DOCX 页数:13 大小:691.93KB
下载 相关 举报
数学建模部分概念 期末复习.docx_第1页
第1页 / 共13页
数学建模部分概念 期末复习.docx_第2页
第2页 / 共13页
数学建模部分概念 期末复习.docx_第3页
第3页 / 共13页
数学建模部分概念 期末复习.docx_第4页
第4页 / 共13页
数学建模部分概念 期末复习.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

数学建模部分概念 期末复习.docx

《数学建模部分概念 期末复习.docx》由会员分享,可在线阅读,更多相关《数学建模部分概念 期末复习.docx(13页珍藏版)》请在冰豆网上搜索。

数学建模部分概念 期末复习.docx

数学建模部分概念期末复习

数学建模部分定义概念

第一章

1.1实践、数学与数学模型

一、相关概念(特定对象特定目的特有内在规律)

1.原型:

客观存在的各种研究对象。

既包括有形的对象,也包括无形的、

思维中的对象,还包括各种系统和过程等

2.模型:

为了某个特定的目的,将原型的某一部分信息简缩,提炼而构

造的整个原型或其部分或其某一层面的替代物。

3.原型与模型的关系:

原型是模型的前提与基础,模型是原型的提炼与

升华。

原型有各个方面和各个层次的特征,而模型只要求反映与某些目

的有关的那些方面和层次。

二、什么是数学模型(MathematicalModel

对于现实世界中的一个特定对象,为了一个特定的目的,根据特

有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到

的一个数学结构。

广义上讲,数学模型是指凡是以相应的客观原型作为背景,加以一级抽

象或多级抽象的数学概念、数学式子、数学理论等都叫数学模型。

狭义上讲,数学模型是指那些反映特定问题或特定事物的数学符号系统。

(我们所指的数学模型是指狭义上的数学模型)

数学模型不是原型的复制品,而是为了一定的目的,对原型所作的一种

抽象模拟。

它用数学算式、数学符号、程序、图表等刻画客观事物的本质属

性与内在关系,是对现实世界的抽象、简化而有本质的描述,它源于现实又

高于现实。

三、什么是数学建模

数学建模是指应用数学的方法解决某一实际问题的全过程。

包括:

(1)对实际问题的较详细的了解、分析和判断;

(2)为解决问题所需相关数学方法的选择;

(3)针对实际问题的数学描述,建立数学模型;

(4)对数学模型的求解和必要的计算;

(5)数学结果在实际问题中的验证;

(6)将合理的数学结果应用于实际问题之中,从而解决问题。

四数学建模流程图(参见教材上册P14)

1实际问题

2抽象、简化、假设,确定变量和参数

3根据某种“定律”或“规律”建立变量和参数间的一个明确的数学关系,即在此简化阶段上构造数学模型

4解析地或近似地求解该数学模型

5用实际问题的实测数据等来解释、验证该数学模型(若不通过,返回第2步)

6投入使用,从而可产生经济、社会效益

完美的图画----黄金分割

黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整

体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为

或1.618:

1,即长段为全段的。

所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于

全部之比,等于另一部分对于该部分之比。

计算黄金分割最简单的方法:

计算斐波那契数列1,1,2,3,5,8,13,21,...从第

二位起相邻两数之比,1/2,2/3,3/5,5/8,8/13,13/21,...的近似值。

 

1.2八步建模法

1.问题提出

2.量的分析

3.模型假设

4.模型建立

5.模型求解

6.模型分析

7.模型检验

8.模型应用

数学建模采用的方法(详见教材P11)

1.机理分析法:

在对研究对象内部机理分析的基础上,利用建模假设所给出

的建模信息或前提条件及相关领域知识、相应的数学工具来构造模型。

2.系统识别建模法:

对系统内部机理不清楚的情况下,利用建模假设或实际

对系统的测试数据所给的系统的输入输出信息及数据,用纯粹的数学方法确

定模型形式,借助于概率论和数理统计来辨识参数构造模型。

3.仿真建模法:

利用各种仿真方法建立数学模型。

4.相似类比建模法:

借助于相似原理和事物之间的类比关系进行建模的方法,

是根据不同研究对象之间的某些相似性(数学相似、物理相似和其他相似)

借用移植领域的数学模型老构造数学模型的方法。

1.3数学模型的分类(参见教材上册P15)

1、按建模的数学方法划分:

初等模型、数学规划模型、微分方程模型、

差分方程模型、概率统计模型、图论模型、模糊模型和灰色模型等;

2、按建模中变量特点划分:

确定性模型与随机性模型、静态模型与动

态模型、线性模型与非线性模型、离散模型与连续模型;

3、按应用领域划分:

人口模型、交通模型、环境模型、规划模型、生

态模型、资源模型等;

4、按建模的目的划分:

描述模型、预测模型、优化模型、决策模型、

控制模型等;

5、按对问题的了解程度划分:

白箱模型、灰箱模型、黑箱模型等;

分类5的具体解释:

(1)白箱模型(WhiteBox)

对系统相当了解,利用系统的机理方程建立起来的数

学模型,通常采用机理建模。

(2)黑箱(BlackBox)模型

对系统并不了解,利用实验得到的输入输出数据来构

建系统的等价模型,通常采用统计建模。

(3)灰箱(GrayBox)模型

介于白箱模型和黑箱模型之间的模型。

1.4数学模型特点与建模能力培养

一、数学模型的特点

1、逼真性和可行性:

模型越逼真就越复杂,应用起来费用越高,常与取得的效益

不成正比。

所以需要对逼真性与可行性进行折衷。

2、渐进性:

数学模型通常不会是一次就成功的,往往需要反复修正,逐渐完善。

3、强健性:

对于已建好的数学模型,当观测数据有微小的改变或者模型结构及

参数发生微小变化时,模型求解的结果也随之发生微小的变化。

4、可转移(移植)性:

数学模型是现实对象抽象化产物,它可能与其它领域其它

事物有共性。

常常好多领域不同事物却共有几乎相同数学模型。

5、非预制性:

大千世界变化莫测,千姿百态,不能要求把所有的模型做成预制品

供我们使用。

建镆时遇到的问题往往事先没有答案,因此必须创新,产生新方法、

新概念。

6、条理性:

从建模角度出发,人们对现实对象分析应该全面、深入,

更具有条理性。

即使建模失败,对解决研究实际问题也是有利的

7、技艺性:

建模与其说使一门技术,不如说是一种技艺很强的技巧

艺术。

期间经验、想象力、洞察力、判断力以及直觉灵感起的作用

往往比数学知识更大。

人的知识是有限的,想象力是无限的。

8、局限性:

由于建模时往往会把现实对象简化、近似、假设,因此当模型应用到实际时就必须考虑被忽略的简化因素。

于是结论往往是相对的、近似的。

另外,由于人类认识能力受科学技术以及数学本身发展水平的限制,至今还有不少实际问题没有建立出有价值的实用的数学模型,如中医诊断等。

二、数学建模能力的培养(教材上册P16)

(1)数学知识的积累;

(2)学好数学模型课,多看、多学数学建模案例;

(3)留心各样事物,培养观察能力和用数学解决问题的思想;

(4)需要丰富的想象力与敏锐、深刻的洞察力;

(5)兴趣是学习的动力,努力培养建模兴趣;

(6)与计算机的紧密关联,学会使用相关软件;

(7)虚心学习,注重团队意识和团结协作;

(8)学会类比,做到“由此及彼和由彼及此”,培养发散思维能力;

(9)培养自学能力,能快速获取新知识,并能学以致用;

(10)学会从杂乱无章的各种信息中快速挑选收集有用信息,利用

图书馆、网络查找相关资料。

 

第二章初等数学模型

2.1比例分析法建模

比例是一个总体中各个部分的数量占总体数量的比重,用于反映总体

的构成或者结构。

数学上表示两个比值相等的式子叫做比例。

在一个比例

中,两个外项的积等于两个内项的积,叫做比例的基本性质。

求比例的未

知项的过程,叫做解比例。

两种相关联的量,一种量变化,另一种量也随着变化,如果两种量中

相对应的两个数的比值(商)一定,两种量就叫做正比例的量,他们的关

系叫做正比例的关系。

如果两种量中,相对应的两个数的积一定,这两种

量就叫做反比例的量,他们的关系叫做反比例关系。

比例在日常生活中的重要应用】

比例是最基本、最初等的数学概念之一,日常生活中的许多实际问题

所指向的对象都蕴含着比例关系,运用比例关系可以建立数学模型,对实

际问题进行描述与求解。

例如:

若两个物体的特征长度之比为1:

λ,则其表面积的比例为1:

λ2,

其体积的比例是1:

λ3。

这反映了一些实际对象中包含的变量之间满足的内

在规律。

(详见教材上册P18)

本节研究“商品包装成本的确定问题”的数学建模问题。

2.6图论方法在数学模型中的运用

一、图论的起源

图论是组合数学的一个分支,起源于1736年欧拉的第

一篇关于图论的论文,这篇论文解决了著名的哥尼斯堡七

桥问题,从而使欧拉成为图论的创始人。

在图中,用点代表各个事物,用边代表各个事物之间的二元关系。

因此

图是研究集合上二元关系的工具,图论给含有二元关系的系统提供了数学模

型,是建立数学模型的重要手段。

由于计算机的迅速发展,有力推动了图论

的发展,使得图论成为数学领域里发展最快的分支之一。

二、相关的图论知识

定义(图)图是一个有序二元组G={V(G),E(G)},其中V(G)={vi}为

顶点集,E(G)={ek}为边集,V=V(G)中的元素vi称为顶点,E=E(G)中的

元素ek叫做边。

顶点总数记为|V(G)|,边的总数记为|E(G)|。

若|V(G)|=n,则称G为n阶图

若|V(G)|与|E(G)|均为有限数,,则称G为有限图

三、最短轨道问题

给定连接若干个城市的铁路网,寻找从指定的某城市到其余城市的最短路。

解决该问题的数学模型如下

设w:

E(G)→R,w(e)叫做图G中的边e的权。

对任意的A∈V(G),寻找轨道

P(A0,A),使得w(P(A0,A))=min{w(A)},A∈Φ,其中Φ是从A0到轨道的集合,

w(A)是轨道A上各边权之和。

求解该最短路问题的迪克斯

设d(A)表示A到A0的距离。

(1)令d(A0)=0,d(A)=+∞,A0≠A;S0={A0},i=0;

(2)对每个ASi,用min{d(A),d(Ai)+w(AiA)}代替d(A),若Ai+1是使d(A)取

最小值的中的顶点(是Si的补集),令Si+1=Si∪{vi+1};

(3)若i=α-1,停止;若i<α-1,则由i+1代替i,转

(2)。

第四章

\

非对称形式的对偶线性规划的对偶原则

(1)如果在原规划问题中,第k个约束条件为等式,则在其对偶问题中

第k个对偶变量无非负限制;反之,如果原规划问题的第k个决策变量无

非负限制,则其对偶问题的第k个约束条件应该为等式。

(2)如果原规划问题是求最大值,且第k个约束条件为“≥”形式,则在

其对偶问题中,第k个对偶变量yk≤0;如果原规划问题是求最大值,且第k个决策变量xk≤0,则其对偶问题中,第k个约束条件为“≤”形式

(3)如果原规划问题是求最小值,且第k个约束条件为“≤”形式,则在

其对偶问题中,第k个对偶变量yk≤0;如果原规划问题是求最小值,且第k个决策变量xk≤0,则其对偶问题中,第k个约束条件为“≥”形式。

动态规划模型

动态规划是求解决策过程的一种最优化的数学方法。

20世纪50年代初,美国数学家等人在研究多阶段决策过程的优化问题时,提出了著名的最佳原理把多阶段决策求解问题转化为逐个求解一系列单阶段决策问题,这种求解最优化问题的方法叫动态规划方法

动态规划方法主要用于求解以时间划分阶段的动态决策过程的优化问题。

但是对于某些与时间无关的静态规划问题,如果可以人为地引入时间因素,把

它视为多阶段决策过程的问题,则也可以用动态规划方法方便地求解。

二、动态规划方法的基本原理---最佳原理

最佳原理

一个最优策略有这样的特性,不论初始状态和初始决策如何,相对于第一

个决策所形成的状态来说,余下的决策必定构成一个最优

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试认证 > 司法考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1