回归正交实验设计.docx

上传人:b****5 文档编号:8366937 上传时间:2023-01-30 格式:DOCX 页数:38 大小:201.60KB
下载 相关 举报
回归正交实验设计.docx_第1页
第1页 / 共38页
回归正交实验设计.docx_第2页
第2页 / 共38页
回归正交实验设计.docx_第3页
第3页 / 共38页
回归正交实验设计.docx_第4页
第4页 / 共38页
回归正交实验设计.docx_第5页
第5页 / 共38页
点击查看更多>>
下载资源
资源描述

回归正交实验设计.docx

《回归正交实验设计.docx》由会员分享,可在线阅读,更多相关《回归正交实验设计.docx(38页珍藏版)》请在冰豆网上搜索。

回归正交实验设计.docx

回归正交实验设计

归正交试验设计

前面介绍的正交试验设计一种很实用的试验设计方法,它能?

I」用较少的试验次数获得较好的试验结果,但是通过正交设计所得至啲优方案只能限制在已走的水平上,而不是一定试验范围内的最优方案;回归分析是一种有效的数据处理方法,通过所确立的回归方程,可以对试验结果进行预测和优化,但回归分析往往只能对试验数据进行被动的处理和分析,不涉及对试验设计的要求。

如果能将两者的优势统一起来,不仅有合理的试验设计和较少的试验次数,还能建立有效的数学模型,这正是我们所期望的。

回归正交设计(orthogonalregressiondesign)就是这样一种试验设计方法,它可以在因素的试验范围内选择适当的试验点,用较少的试验建立一个精度高、统计性质好的回归方程,并能解决试验优化问题。

一次回归正交试验设计及结果分析

—次回归正交设计就是利用回归正交设计原理,建立试验指标(y)与m个试验因素xi,X2xm,

之间的一元回归方程:

y=a++/?

2x2+•••4-bmxm(8-1)

或者

m

y=a+Yjhjxj+Xbkjxkxjk=l,2,fm-1(j#k)(8-2)

7-1k{j

8.1.1—次回归正交设计的基本方法

(1)确走因素的变化范围

根据试验指标y,选择需要考察的m个因素Xj(j二1,2,…,m),并确走每个因素的取值范围。

设因素%的变化范围为凶1,Xj2],分别称Xji和Xr为因素%的下水平和上水平,并将它们的算术平均值称作因素Xj的零水平,用XjO。

表示。

勺度艾

上水平与零水平之差称为因素为的变化间距,用勺表示r即:

(8-4)

xn

△十七丄(8-5)

(2)因素水平的编码

编码(coding)是将Xj的0水平进行线性变换,即:

(8-6)

式(8—6)中可就是因素为的编码,两者是一一对应的。

显然,与勺,和勺的编码分别为一1,0和1,即Zjl=-l,Zj2=O,Zj2=l。

一般称Xj为自然变量,Zj为规范变量。

因素水平的编码结果可表示成表8—lo对因素Xj的各水平进行编码的目的,是为了使每个因素的每个水平在编码空间是“平等"的,即规范变量Zj的取值范由都在[1,一1]内变化,不会受到自然变量Xj的单位和取值大小的影响。

所以编码能将试验结果y与因素Zj(j=l,2,…,m)各水平之间的回归问题,转换成试验结果y与编码值Zj之间的回归问题,从而大大简化了回归计算量。

表8—1因倉水平编码表

规范变址ZJ

自然变址Xj

XI

x:

•••

Xm

下水平(一1)

XII

X21

•••

Xml

上水平

(1)

XI2

X22

•••

Xm2

零水平(0)

Xio

X20

•••

Xmo

变化间距厶j

Ai

△2

•••

△m

(3)—次回归正交设计表

将二水平的正交表中“2”用“一1”代换,就可以得到一次回归正交设计表。

例如正交表Ls(27)经过变换后得到的回归正交设计表如表8—2。

表8—2—次回归正交设计表

试验号

列号

1

9

3

4

5

6

7

1

1

1

1

1

1

1

1

2

1

1

1

-1

-1

-1

-1

3

1

-1

-1

1

1

-1

1

4

1

1

-1

-1

_1

1

1

5

-1

1

-1

1

-1

1

-1

6

1

1

-1

-1

1

-1

1

7

-1

-1

1

1

_1

-1

1

8

-1

-1

1

1

1

1

1

代换后,正交表中的编码不仅表示因素的不同水平,也表示了因素水平数值上的大小。

从表8—2可以看岀回归正交设计表具有如下特点:

1任一列编码的和为0,即:

£可=°(8-7)

所以有亏=0,7=1,2,•••,/»(8—8)

2任两列编码的乘积之和等于零,即:

£SS=0,R=1,2,…〃?

一1()工約(8-9)

J-1

这些特点说明了转换之后的正交表同样具有正交性,可使回归计算大大简化。

(4)试验方案的确定

与正交试验设计类似,在确泄试验方案之前,要将规范变量与安排在一元回归正交表相应的列中,即表头设计。

例如,需考察三个因素心、X2、X3,可选用Lg(27)进行试验设计,根据正交表327)的表头设计表,应将XI、X2、X3分别安排在第1、2和4列,也就是将Zi,Z2,Z3安排在表8—2的第1、2和4列上。

如果还要考虑交互作用XIX2、X1X3,也可参考正交表Ls(27)的交互作用表,将ZIZ2和Z2Z3,分别安排在表8—2的第3、5列上,表头设计结果见表8—3。

每号试验的方案由Z|,z2,Z3Z对应的水平确左,这与正交试验是一致的。

表8.3三因素一次回归正交表

试验号

1

9

3

4

5

Zi

z2

ZiZ2

z3

乙z3

1

1

1

1

1

1

2

1

1

1

-i

-1

3

1

-1

-1

1

1

4

1

1

1

_1

-1

5

-1

1

_1

1

-1

6

1

1

1

-1

1

7

-1

-1

1

1

-1

8

-1

-1

1

-1

1

9

0

0

0

0

0

10

0

0

0

0

0

从表8-3可以看出,第3列的编码等于第1,2列编码的乘积,同样第5列的编码等于第1,4列编码的乘积,即交互作用列的编码等于表中对应两因素列编码的乘积,所以用回归正交表安排交互作用时,可以不参考正交表的交互作用表,直接根据这一规律写出交互作用列的编码,这比原正交表的使用更方便。

表8-3中的第9,10号试验称为零水平试验或中心试验。

安排零水平试验的目的是为了进行更精确的统汁分析(如回归方程的失拟检验等),得到精度较高的回归方程。

当然,如果不考虑失拟检验,也可不安排零水平试验。

仃度文

8.1.2一次回归方程的建立

建立回归方程,关键是确泄回归系数。

设总试验次数为n,其中包括1%次二水平试验(原正交表所规泄的试验)和mo次零水平试验,即:

(8-10)

如果试验结果为H(i=h2,・・・,n),根据最小二乘法原理和回归正交表的两个特点,可以得到一次回归方程系数的计算公式如下(证明略):

(8-11)

Dm

b=,j=\2・・・M(8-12)

b.=—,j>k,&=1,2,・・・,加一1(8—13)

上述式中,可表示Zi列各水平的编码,(ZjZk)i表示ZjZk列各水平的编码。

需要指出的是,如果一次回归方程中含有交互作用项ZjZk(j>k),则回归方程不是线性的,但交互作用项的回归系数的计算和检验与线性项Zj是相同的,这是因为交互作用对试验结果也有影响,可以被看作是影响因素。

通过上述方法确定偏回归系数之后,可以直接根据它们绝对值的大小来判断各因素和交互作用的相对重要性,而不用转换成标准回归系数匚这是因为,在回归正交设汁中.所有因素的水平都经过了无因次的编码变换,它们在所研究的范国内都是“平等的”,因而所求得的回归系数不受因素的单位和取值的影响,直接反映了该因素作用的大小。

另外,回归系数的符号反映了因素对试验指标影响的正负。

8.1.3回归方程及偏回归系数的方差分析

(1)无零水平试验时

首先计算各种平方和及自由度。

总平方和为:

其自由度为妨=〃一仁

根据式(4-44)和式(8-12),推导岀一次项偏回归平方和的计算公式为:

R=JsSr/SSt(4—44)

SSj=mcbj,J=1,2,…,fit(8—15)

同理可以得到交互项偏回归平方和的计算公式:

SS©=叫bj,j>kt上=1,2,•••""_1(8—16)

各种偏回归平方和的自由度都为lo

一次项偏回归平方和与交互项偏回归平方和的总和就是回归平方和:

了贋文

(8-17)

ss厂工SS-次项+》ss如项

所以回归平方和的自由度也是各偏回归平方和的自由度之和:

于是残差平方和为:

其自由度为:

期?

=工妙次项+工妙交互琐(8一⑻

SSe=SST—SSR(8—19)

如果考虑了所有的一次项和交互项,则可参照表8-4进行方差分析。

表8J—次回归正交设计的方差分析

差异源

SS

df

MS

F

Z】

SS\

1

SS,

SSjMSe

5

SS.

1

SSr

SS2/MSe

1

SS/M,

SS门

1

SS\3

SSjMSe

1

込:

SS/MS<,

z加

ss(”i”

1

SS(”L“

SS(“/MS,

回归

SSr

〃2(〃2+l)/2

MSK=SSR/dfK

MSK/MSe

残差

SSe

加伽+1)

-1

2

MSe=SSe/dfe

总和

SST

n-1

在实际做试验时,往往只需要考虑几个交互作用,或者可以不考虑交互作用,所以在计算回归和残差自由度时应与实际情况相符。

如果不考虑交互作用,dfR=m,dfe=n-m-\o值得注意的是,无论是否考虑交互作用,都不影响偏回归系数的计算公式。

经偏回归系数显著性检验,证明对试验结果影响不显著的因素或交互作用,可将英从回归方程中剔除,

而不会影响到其他回归系数的值,也不需要重新建立回归方程。

但应对回归方程再次进行检验,将被剔除变量的偏回归平方和、自由度并入到残差平方和与自由度中,然后再进行相关的分析计算。

(2)有零水平试验时

如果零水平试验的次数1血22,则可以进行回归方程的失拟性(lackoffit)检验。

前而对回归方程进行的显著性检验,只能说明相对于残差平方和而言,并因素对试验结果的影响是否显箸。

即使所建立的回归方程是显著的,也只反映了回归方程在试验点上与试验结果拟合得较好,不能说明在整个研究范用内回归方程都能与实测值有好的拟合。

为了检验一次回归方程在整个研究范囤内的拟合情况,则应安排n^(m0>2)次零水平试验,进行回归方程的失拟性检验,或称拟合度检验(testofgoodnessoffit)。

设m«次零水平试验结果为y(n,y°2,…,(”根据这m()次重复试验,可以计算出重复试验误差为:

(8-21)

sSc=£(儿一$)=£此一一为血

『■】r-l,WoV/-I

试验误差对应的自由度为:

(8-22)

由前述知,只有回归系数a与零水平试验次数m。

有关,其他各偏回归系数都只与二水平试验次数mo有关,所以增加零水平试验后回归平方和SSR没有变化,

可见,失拟平方和表示了回归方程未能拟合的部分,包括未考虑的其他因素及各Xj的髙次项等所引起的差异。

它对应的自由度为:

所以有:

这时

(8-28)

服从自由度为(仏「的F分布。

对于给左的显著性水平(一般取0.1),当Fl4

就认为回归方程失拟不显箸,失拟平方和SS”是由随机误差造成的,否则说明所建立的回归方程拟合得不好,需要进一步改进回归模型,如引入别的因素或建立更高次的回归方程。

只有当回归方程显著、失拟检验不显著时,才能说明所建立的回归方程是拟合得很好的。

最后需要指岀的是,回归正交试验得到的回归方程是规范变量与试验指标之间的关系式,还应对回归方程的编码值进行回代,得到自然变量与试验指标的回归关系式。

【例8-1]用石墨炉原子吸收分光光度计法测泄食品中的铅,为提髙测左灵敏度,希望吸光度(y)大。

为提髙吸光度,讨论了xi(灰化温度/°C)、X2(原子化温度/°C)和X3(灯电流/mA)三个因素对吸光度的

影响,并考虑交互作用xmXi3o已知Xi=300~700°C,X2=1800—2400°C,X3=8〜10mA。

试通过回归

正交试验确定吸光度与三个因素之间的函数关系式。

解:

(1)因素水平编码

因X,=300〜700'C,所以其上水平x12=700,下水平xK=300,零水平不0=\打匝=型:

=500,变化间距△]=州2—州0=700-500=200,以xn=300为例,对应

=3020^00=-U同理可对其他因素水平进彳亍编码,编码结果见表一。

表8—5例8—I因素水平编码表

编码ZJ

灰化温度xi/^C

原子化温度x2/r

灯电流X3/mA

上水平

(1)

700

2400

10

下水平(一1)

300

1800

8

零水平(0)

500

2100

9

变化间距厶j

200

300

1

(2)正交表的选择和试验方案的确上

依题意,可以选用正交表L8(27),经编码转换后,得到表8—2所示的回归正交表。

如表8-6所示,

将弘Z2.Z3分别安排在第1,2和4列.则第3列和第5列分别为交互作用ZldZ2Z3:

列。

不进行零水平试验,故总试验次数n=8.试验结果也列在表8-6中(注:

本例的试验方案和试验结果与例6—5是完全一样的)。

表8・6例8—1三元一次回归正交设计试验方案及试验结果

试验号

Z|

Z2

ZlZ2

Z3

Z|Z3

灰化溫度XI

/C

原子化温度X2

/•c

灯电流心

/mA

吸光度yi

1

1

1

1

1

1

700

2400

1()

0.552

2

1

1

1

-1

-1

700

2400

8

0.554

3

1

T

-1

1

1

700

1800

10

0.480

4

1

-1

-1

-1

1

700

1800

8

0.472

5

-1

1

-1

1

-1

300

2400

1()

0.516

6

-1

1

T

-1

1

300

2400

8

0.532

7

-1

-1

1

1

-1

300

1800

1()

0.448

8

-1

・1

1

-1

1

300

1800

8

0.484

(3)回归方程的建立

依题意,mo=O,n=mc=8o根据回归系数的计算公式,将有关计算列在表8—7中。

表8-7例8—1三元一次回归正交设计计算表

试验号

Z1

Z2

ZlZl

Z3

ZlZ3

y

y2

z】y

Z2y

zjy

(zizi)y

⑵z.Oy

1

9

3

4

5

6

7

8

1

1

1

1

-1

-1

1

1

1

1

-1

-1

1

1

—1

—1

1

1

_[

-1

-1

1

1

1

_]

1

-1

1

-1

1

-1

1

-1

1

-1

1

-1

1

0.552

0.554

0.480

0.472

0.516

0.532

0.448

0.484

0304704

0306916

0.230400

0.222784

0.266256

0.283024

0.200704

0.234256

0.552

0.554

0.480

0.472—0.516—0.532—0.448—0.484

0.552

0.554-0.480-0.472

0.516

0.532-0.448-0.484

0.552

-0.554

0.480

-0.472

0.516

-0.532

0.448

0.484

0.552

0.554-0.480-0.472-0.516一0.532

0.448

0.484

0.552

-0.554

0.480

-0.472

0.516

0.532

0.448

0.484

4.038

2.049044

0.078

0.270

-0.046

0.038

0.058

由表8—7得:

=0.50475

勺=补警0.00975

葺j°575

匕“吨

8

匕鑒迪。

725

8

所以回归方程为

y=0.50475+0.0975^+0.03375%—0・00575z3+0・00475勺冬+0.00725^23

由该回归方程中偏回归系数绝对值的大小,可以得到各因素和交互作用的主次顺序为:

X2>X]>X]X3>X3>X|X2,这与例6—5中正交试验的分析结果是一样的。

(4)方差分析

w1n4AQ82

SS.『=X>7一一(》〉;)'=2.049044一——=0.010864

r-lnr-l*

SS、=m氏=8x0.009752=0.000761

552=meb;=8x0.033752=0.009113

553=叫£=8x0.005752=0.000265

SS、2==8x0.004752=0.000181

SS、3=mb\=8x0.007252=0.000421

SSr=SS\+SS、+SS3+SSy+SSyy

=0.000761+0.009113+0.000265+0.000181+0.000421

=0.010741

SSe=SST一SSr=0.010864一0.010741=0.000123

方差分析结果见表8—8。

由表8-8,对于显著性水平a=0.05,只有因素z2对试验指标y有非常显著的影响,英他因素和交互作用对试验指标都无显著影响,所以应将Z”Z3,Z,Z3,Z】Z2的平方和及自由度并入残差项,然后再进行方差分析。

这时的方差分析为一元方差分析,分析结果见表8—9。

表8—8例8—1方差分析表

差异源

SS

df

MS

F

显著性

Z1

0.000761

1

0.000761

12.27

Z2

0.009113

1

0.009113

146.98

Z3

0.000265

1

0.000265

4.27

ZlZ3

0.000181

1

0.000181

2.92

Z1Z2

0.000421

1

0.000421

6.79

回归

0.010741

5

0.002148

34.65

残差e

0.000123

2

0.000062

总和

0.010864

n1=7

注:

Fo.o5(1>2)=18.51,Fo.oi(192)=9&49’Fo.os(5»2)=19.30.Fo.oi(5»2)=99.30°

表8—9例8—1第二次方差分析表

 

差异源

SS

df

MS

F

显著性

回归(Z2)

0.009113

1

0.009113

31.21

•♦

残差e

0.001751

6

0.000292

总和

0.010864

n1=7

注:

Fo.o5(1»6)=5.99・Fo.oi(1・6)=13・74。

由表8—9可知,因素Z2对试验指标y有非常显著的影响,因此原回归方程可以简化为:

y=0.50475+0.03375z2

可见,只有原子化温度Z2对吸光度有显著影响,两者之间存在显著的线性关系,而且原子化温度取上水平

时试脸结果最好。

根据编码公式’宁二喘^将上述线性回归方程进行回代:

"475+0.03珂詈

整理后得到:

y=0.2685+0.0001125x2

【例8-2]从某种植物中提取黄酮类物质,为了对提取工艺进行优化,选取三个相对重要的因素:

乙醇浓度(xj、液固比(X2)和回流次数(X3)进行了回归正交试验,不考虑交互作用。

已知&=60%〜80%,X2=8〜12,心=1〜3次。

试通过回归正交试验确左黄酮提取率与三个因素之间的函数关系式。

解:

(1)因素水平编码及试验方案的确左

表8・10例8・2因素水平编码表

编码习

乙醇浓度/%

液固比

回流次数

-1

60

8

1

0

70

10

2

1

80

12

3

△j

10

9

*0

1

由于不考虑交互作用,所以本例要求建立一个三元线性方程。

因素水平编码如表8-10所示。

选正交表LMU)安排试验,将三个因素分别安排在回归正交表的第1、2、4列,试验方案及试验结果见表8-11,表中的第9、10.11号试验为零水平试验。

表8・11例8・2试验方案及试验结果

试验号

zl

z2

z3

乙醇浓度/%

液固比

回流次数

提収率y/%

1

1

1

1

80

12

3

8.0

2

1

1

1

80

12

1

7.3

3

1

-1

1

80

8

3

6.9

4

1

-1

-1

80

8

1

6.4

5

-1

1

1

60

12

3

6.9

6

-1

1

-1

60

12

1

6.5

7

-1

-1

1

60

8

3

6.0

8

-1

-1

1

60

8

1

5」

9

0

0

0

70

10

2

6.6

10

0

0

0

70

10

2

6.5

11

0

()

0

70

10

2

6.6

⑵回归方程的建立

将有关计算过程列在表8—12中。

表8-12例8-2试验结果及计算表

试验号

Z1

Z2

Z3

提取率y/%

y2

ziy

zzy

Z3y

1

1

1

1

8.()

64.00

8.()

8.()

8.0

7

**

1

1

1

73

53.29

7.3

7.3

7.5

3

1

-1

1

6.9

47.61

6.9

6.9

6.9

4

1

-1

-1

6.4

40.96

6.4

6.4

6.4

5

-1

1

1

6.9

47.61

-6.9

6.9

6.9

6

-1

1

-1

6.5

42.25

-6.5

6.5

—6.5

7

-1

-1

1

6.0

36.00

-6.0

-6.0

6.0

8

-1

-1

-1

5」

26.01

-5.1

-5.1

-5.1

9

0

0

0

6.6

43.56

0.0

0.0

0.0

10

0

0

0

6.5

42.25

0.0

0

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 预防医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1