matlab第一次作业.docx

上传人:b****5 文档编号:8356899 上传时间:2023-01-30 格式:DOCX 页数:26 大小:26.11KB
下载 相关 举报
matlab第一次作业.docx_第1页
第1页 / 共26页
matlab第一次作业.docx_第2页
第2页 / 共26页
matlab第一次作业.docx_第3页
第3页 / 共26页
matlab第一次作业.docx_第4页
第4页 / 共26页
matlab第一次作业.docx_第5页
第5页 / 共26页
点击查看更多>>
下载资源
资源描述

matlab第一次作业.docx

《matlab第一次作业.docx》由会员分享,可在线阅读,更多相关《matlab第一次作业.docx(26页珍藏版)》请在冰豆网上搜索。

matlab第一次作业.docx

matlab第一次作业

极限级数练习题

一、

>>symsnkx

>>f=(n+1)*(n+2)*(n+3)/(5*n^3)

f=

((n+1)*(n+2)*(n+3))/(5*n^3)

>>g=[(-2)^n+3^n]/[(-2)^(n+1)+3^(n+1)]

g=

((-2)^n+3^n)/((-2)^(n+1)+3^(n+1))

>>h=exp(-x)*atan(x)

h=

exp(-x)*atan(x)

>>i=(tan(x)-sin(x))/x^3

i=

-(sin(x)-tan(x))/x^3

>>f1=limit(f,inf)

f1=

1/5

>>g1=limit(g,inf)

g1=

1/3

>>h1=limit(h,inf)

h1=

0

>>i1=limit(i,0)

i1=

1/2

二、

>>symsn

>>f=1/(n*(n+1))

f=

1/(n*(n+1))

>>g=sqrt(n/(n+1))

g=

(n/(n+1))^(1/2)

>>h=sin(pi/n*(n+1))

h=

sin((pi*(n+1))/n)

>>i=n*3^n/2^n

i=

1/2^n*3^n*n

>>f1=symsum(f,n,1,inf)

f1=

1

>>g1=symsum(g,n,1,inf)

g1=

sum((n/(n+1))^(1/2),n==1..Inf)

>>h1=symsum(h,n,1,inf)

h1=

(sum(exp(-pi*i)*exp(-(pi*i)/n),n==1..Inf)*i)/2-(sum(exp(pi*i)*exp((pi*i)/n),n==1..Inf)*i)/2>>i1=symsum(i,n,1,inf)

i1=

Inf

因而,第

(1)小题收敛,

(2)(3)(4)小题均发散.

三、

>>symsn

>>s=(-1)^n*(n+1)/3^n

s=

(-1)^n/3^n*(n+1)

>>f=(-1)^n/log(n)

f=

(-1)^n/log(n)

>>h=n/2^n*cos(2*n*pi/3)

h=

1/2^n*n*cos((2*pi*n)/3)

>>s1=symsum(s,n,1,inf)

s1=

-7/16

>>f1=symsum(f,n,2,inf)

f1=

sum((-1)^n/log(n),n==2..Inf)

>>h1=symsum(h,n,1,inf)

h1=

((3^(1/2)*i)/2-1/2)/(4*(3^(1/2)*(i/4)-5/4)^2)-((3^(1/2)*i)/2+1/2)/(4*(3^(1/2)*(i/4)+5/4)^2)

因而,第

(1)、(3)小题收敛,第

(2)小题不收敛.

>>s2=symsum(abs(s),n,1,inf)

s2=

5/4

>>f2=symsum(abs(f),n,2,inf)

f2=

sum(abs((-1)^n)/log(n),n==2..Inf)

>>h2=symsum(abs(h),n,1,inf)

h2=

sum(1/2^n*n*abs(cos((2*pi*n)/3)),n==1..Inf)

因而,第

(1)小题绝对收敛,第

(2)小题不收敛,第(3)小题条件收敛.

四、

>>symsnx

>>s=((2*n-1)*(x^(2*n-2)))/(2^n)

s=

1/2^n*x^(2*n-2)*(2*n-1)

>>f=(x^n)/(n*2^n)

f=

(1/2^n*x^n)/n

>>g=n*(n+1)*x^(n-1)/2

g=

(n*x^(n-1)*(n+1))/2

>>h=x^n/(n*(n+1))

h=

x^n/(n*(n+1))

>>s1=symsum(s,n,1,inf)

s1=

1/4*pi^(1/2)*2^(3/4)*(x^2)^(1/4)/(1-1/2*x^2)^(3/2)*LegendreP(1/2,1/2,(1/2*x^2+1)/(1-1/2*x^2))

>>f1=symsum(f,n,1,inf)

f1=

-log(1-1/2*x)

>>g1=symsum(g,n,1,inf)

g1=

-1/(x-1)^3

>>h1=symsum(h,n,1,inf)

h1=

1-(x-1)/x*log(1-x)

五、

1、>>symsn

>>f=((3^n+5^n)/n)^(1/n)

f=

((3^n+5^n)/n)^(1/n)

>>s=limit(f,n,inf)

s=

5

>>R=1/5

R=

0.2000

2、>>symsn

>>f=(n/(2^n))^(1/(2*n))

f=

(1/2^n*n)^(1/(2*n))

>>f1=limit(f,n,inf)

f1=

2^(1/2)/2

>>R=1/f1

R=

2^(1/2)

六、

>>symsx

>>r=taylor(log(x+1),x,0,'order',9)

r=

-x^8/8+x^7/7-x^6/6+x^5/5-x^4/4+x^3/3-x^2/2+x

>>f=taylor(x^4-5*x^3+x^2-3*x+4,x,4,'order',5)

f=

21*x+37*(x-4)^2+11*(x-4)^3+(x-4)^4-140

>>x=-0.9:

1/50:

1.2

>>y1=log(x+1)

>>y2=-x.^8./8+x.^7./7-x.^6./6+x.^5./5-x.^4./4+x.^3./3-x.^2./2+x

>>plot(x,y1)

>>holdon

>>plot(x,y2,'r')

x=0:

1/100:

8

>>s1=x.^4-5.*x.^3+x.^2-3.*x+4;plot(x,s1)

>>holdon

>>s2=21.*x+37.*(x-4).^2+11.*(x-4).^3+(x-4).^4-140;plot(x,s2,'r')

微分练习题

一、

>>symsx

>>f=(cos(cos(2*x)))^2

f=

cos(cos(2*x))^2

>>dfdx=diff(f,x,2)

dfdx=

8*sin(2*x)^2*sin(cos(2*x))^2-8*sin(2*x)^2*cos(cos(2*x))^2+8*cos(2*x)*cos(cos(2*x))*sin(cos(2*x))

二、

>>symsx

>>g=sym('atan(y/x)=log(sqrt(x^2+y^2))')

g=

atan(y/x)==log((x^2+y^2)^(1/2))

>>g=sym('atan(y(x)/x)=log(sqrt(x^2+y(x)^2))')

g=

atan(y(x)/x)==log((x^2+y(x)^2)^(1/2))

>>dgdx=diff(g,x)

dgdx=

(diff(y(x),x)/x-y(x)/x^2)/(y(x)^2/x^2+1)==(2*x+2*y(x)*diff(y(x),x))/(2*(x^2+y(x)^2))

>>dgdx1=subs(dgdx,'diff(y(x),x)','dydx')

dgdx1=

-(y(x)/x^2-dydx/x)/(y(x)^2/x^2+1)==(2*x+2*dydx*y(x))/(2*(x^2+y(x)^2))

>>dydx=solve(dgdx1,'dydx')

dydx=

(x+y(x))/(x-y(x))

三、

(exp(t)*cos(t)-exp(t)*sin(t))/(exp(t)*cos(t)+exp(t)*sin(t))

>>dydxdt=diff(dydx,t)

dydxdt=

-(2*exp(t)*sin(t))/(exp(t)*cos(t)+exp(t)*sin(t))-(2*exp(t)*cos(t)*(exp(t)*cos(t)-exp(t)*sin(t)))/(exp(t)*cos(t)+exp(t)*sin(t))^2

>>dydx2=dydxdt/dxdt

dydx2=

-((2*exp(t)*sin(t))/(exp(t)*cos(t)+exp(t)*sin(t))+(2*exp(t)*cos(t)*(exp(t)*cos(t)-exp(t)*sin(t)))/(exp(t)*cos(t)+exp(t)*sin(t))^2)/(exp(t)*cos(t)+exp(t)*sin(t))

>>L=(x+y)^2*dydx2

L=

-(exp(t)*cos(t)+exp(t)*sin(t))*((2*exp(t)*sin(t))/(exp(t)*cos(t)+exp(t)*sin(t))+(2*exp(t)*cos(t)*(exp(t)*cos(t)-exp(t)*sin(t)))/(exp(t)*cos(t)+exp(t)*sin(t))^2)

>>R=2*(x*dydx-y)

R=

(2*exp(t)*sin(t)*(exp(t)*cos(t)-exp(t)*sin(t)))/(exp(t)*cos(t)+exp(t)*sin(t))-2*exp(t)*cos(t)

>>L-R

ans=

2*exp(t)*cos(t)-(exp(t)*cos(t)+exp(t)*sin(t))*((2*exp(t)*sin(t))/(exp(t)*cos(t)+exp(t)*sin(t))+(2*exp(t)*cos(t)*(exp(t)*cos(t)-exp(t)*sin(t)))/(exp(t)*cos(t)+exp(t)*sin(t))^2)-(2*exp(t)*sin(t)*(exp(t)*cos(t)-exp(t)*sin(t)))/(exp(t)*cos(t)+exp(t)*sin(t))

>>H=simple(L-R)

H=

0

四、

>>symsxy

>>z=cos(sqrt(x^2+y^2))

z=

cos((x^2+y^2)^(1/2))

>>dzdx=diff(z,x,1)

dzdx=

-(x*sin((x^2+y^2)^(1/2)))/(x^2+y^2)^(1/2)

>>dzdy=diff(z,y,1)

dzdy=

-(y*sin((x^2+y^2)^(1/2)))/(x^2+y^2)^(1/2)

>>dzdxdy=diff(diff(z,x),y)

dzdxdy=

(x*y*sin((x^2+y^2)^(1/2)))/(x^2+y^2)^(3/2)-(x*y*cos((x^2+y^2)^(1/2)))/(x^2+y^2)

五、

>>symsxy

>>g=sym('x+2*y+z(x,y)-2*sqrt(x*y*z(x,y))=0')

g=

x+2*y-2*(x*y*z(x,y))^(1/2)+z(x,y)==0

>>dgdx=diff(g,x)

dgdx=

diff(z(x,y),x)-(x*y*diff(z(x,y),x)+y*z(x,y))/(x*y*z(x,y))^(1/2)+1==0

>>dgdx1=subs(dgdx,'diff(z(x,y),x)','dzdx')

dgdx1=

dzdx-(y*z(x,y)+dzdx*x*y)/(x*y*z(x,y))^(1/2)+1==0

>>dzdx=solve(dgdx1,'dzdx')

dzdx=

-((x*y*z(x,y))^(1/2)-y*z(x,y))/((x*y*z(x,y))^(1/2)-x*y)

>>dgdy=diff(g,y)

dgdy=

diff(z(x,y),y)-(x*y*diff(z(x,y),y)+x*z(x,y))/(x*y*z(x,y))^(1/2)+2==0

>>dgdy1=subs(dgdy,'diff(z(x,y),y)','dzdy')

dgdy1=

dzdy-(x*z(x,y)+dzdy*x*y)/(x*y*z(x,y))^(1/2)+2==0

>>dzdy=solve(dgdy1,'dzdy')

dzdy=

-((x*z(x,y))/(x*y*z(x,y))^(1/2)-2)/((x*y)/(x*y*z(x,y))^(1/2)-1)

选址问题

>>symsx

>>y=20*sqrt(x^2+9)+15*(5-x)

y=

20*(x^2+9)^(1/2)-15*x+75

>>dydx=diff(y,x)

dydx=

(20*x)/(x^2+9)^(1/2)-15

>>z=solve('(20*x)/(x^2+9)^(1/2)-15','x')

z=

(9*7^(1/2))/7

因此,M应建在距离B点(9*7^(1/2))/7米处.

积分练习题

一、

>>symsx

>>s=1/((asin(x))^2*sqrt(1-x^2))

s=

1/(asin(x)^2*(1-x^2)^(1/2))

>>f=cos(x)*sin(x)/(1+cos(x))^2

f=

(cos(x)*sin(x))/(cos(x)+1)^2

>>g=log(x+1)/sqrt(x+1)

g=

log(x+1)/(x+1)^(1/2)

>>h=cos(log(x))

h=

cos(log(x))

>>ints=int(s,x)

ints=

-1/asin(x)

>>intf=int(f,x)

intf=

-log(cos(x)+1)-1/(cos(x)+1)

>>intg=int(g,x)

intg=

2*(log(x+1)-2)*(x+1)^(1/2)

>>inth=int(h,x)

inth=

(x*(cos(log(x))+sin(log(x))))/2

二、

>>symsx

>>s=(1+log(x))/x

s=

(log(x)+1)/x

>>f=x*atan(x)

f=

x*atan(x)

>>g=abs(x-1)

g=

abs(x-1)

>>h=(x*sin(x))^2

h=

x^2*sin(x)^2

>>intf=int(f,x,0,1)

intf=

pi/4-1/2

>>ints=int(s,x,1,exp

(1))

ints=

(log(3060513257434037/1125899906842624)*(log(3060513257434037/1125899906842624)+2))/2

>>intg=int(g,x,0,2)

intg=

1

>>inth=int(h,x,0,x)

inth=

sin(2*x)/8-(x*cos(2*x))/4-(x^2*sin(2*x))/4+x^3/6

三、

>>symsxt

>>f=cos(t^2)

f=

cos(t^2)

>>g=1/(1+t^2)

g=

1/(t^2+1)

>>f1=int(f,t,sin(x),0)

f1=

-(2^(1/2)*pi^(1/2)*fresnelC((2^(1/2)*sin(x))/pi^(1/2)))/2

>>g1=int(g,t,x^2,x^3)

g1=

atan(x^3)-atan(x^2)

>>df1dx=diff(f1,x)

df1dx=

-cos(sin(x)^2)*cos(x)

>>dg1dx=diff(g1,x)

dg1dx=

(3*x^2)/(x^6+1)-(2*x)/(x^4+1)

四、

>>symstx

>>f=sin(t^2)

f=

sin(t^2)

>>g=x^3+x^4

g=

x^4+x^3

>>symsa

>>h=t/sqrt(a+t)

h=

t/(a+t)^(1/2)

>>s=x^4

s=

x^4

>>f1=int(f,t,0,sin(x))

f1=

(2^(1/2)*pi^(1/2)*fresnelS((2^(1/2)*sin(x))/pi^(1/2)))/2

>>h1=int(h,t,0,x^2)

Warning:

Explicitintegralcouldnotbefound.

h1=

piecewise([ainDom:

:

ImageSet(y*i,y,R_)orainR_,(4*a^(3/2))/3-(2*(-x^2+2*a)*(x^2+a)^(1/2))/3],[notainDom:

:

ImageSet(y*i,y,R_)andnotainR_,int(t/(a+t)^(1/2),t==0..x^2)])

>>f2=f1/g

f2=

(2^(1/2)*pi^(1/2)*fresnelS((2^(1/2)*sin(x))/pi^(1/2)))/(2*(x^4+x^3))

>>h2=h1/s

h2=

piecewise([ainDom:

:

ImageSet(y*i,y,R_)orainR_,-((2*(-x^2+2*a)*(x^2+a)^(1/2))/3-(4*a^(3/2))/3)/x^4],[notainDom:

:

ImageSet(y*i,y,R_)andnotainR_,int(t/(a+t)^(1/2),t==0..x^2)/x^4])

>>f3=limit(f2,x,0)

f3=

1/3

>>h3=limit(h2,x,0)

h3=

1/(2*a^(1/2))

六、

>>symsxyt

>>s1=int(exp(t),t,0,y)

s1=

exp(y)-1

>>s2=int(cos(t),t,0,x)

s2=

sin(x)

>>g=sym('exp(y(x))-1+sin(x)=0')

g=

exp(y(x))+sin(x)-1==0

>>dgdx=diff(g,x)

dgdx=

exp(y(x))*diff(y(x),x)+cos(x)==0

>>dgdx1=subs(dgdx,'diff(y(x),x)','dydx')

dgdx1=

cos(x)+dydx*exp(y(x))==0

>>dydx=solve(dgdx1,'dydx')

dydx=

-exp(-y(x))*cos(x)

七、

>>symsx

>>f=sin(sin(x))/x

f=

sin(sin(x))/x

>>g=exp(-x)*x^5.1

g=

x^(51/10)*exp(-x)

>>f1=int(f,x,0,x/2)

Warning:

Explicitintegralcouldnotbefound.

f1=

int(sin(sin(x))/x,x==0..x/2)

>>g1=int(g,x,0,inf))

>>g1=int(g,x,0,inf)

g1=

(14973651*gamma(1/10))/1000000

八、

>>symsxp

>>f=1/x^p

f=

1/x^p

>>s=1/x^2/(1+x)

s=

1/(x^2*(x+1))

>>g=1/(x*sqrt(1-(log(x))^2))

g=

1/(x*(1-log(x)^2)^(1/2))

>>h=exp(-2^x)/(2-x)^2

h=

exp(-2^x)/(x-2)^2

>>f1=int(f,x,1,inf)

Warning:

Explicitintegralcouldnotbefound.

f1=

piecewise([p==1,Inf],[p<1,Inf+1/(p-1)],[1

>>g1=int(g,x,1,2)

g1=

asin(log

(2))

>>s1=int(s,x,1,inf)

s1=

1-log

(2)

>>h1=int(h,x,0,2)

Warning:

Explicitintegralcouldnotbefound.

h1=

int(exp(-2^x)/(x-2)^2,x==0..2)

九、

>>symsxy

>>F=int(int(x*y,x,y^2,y+2),y,-1,2)

F=

45/8

十、

>>symsxy

>>F=int(int(exp(-x^2-y^2),y,-sqrt(1-x^2),sqrt(1-x^2)),x,-1,1)

Warning:

Explicitintegralcouldnotbefound.

F=

int(pi^(1/2)*erf((1-x^2)^(1/2))*exp(-x^2),x==-1..1)

十一、

>>symsxyz

>>int(int(int(1,z,x^2+2*y^2,6-2*x^2-y^2),y,-sqrt(2-x^2),sqrt(2-x^2)),x,-2^(1/2),2^(1/2))

ans=

6*pi

十二、

>>symsRAB

>>x=R*cos(A)*cos(B)

x=

R*cos(A)*co

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工作范文 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1