温度控制系统课程设计.docx

上传人:b****5 文档编号:8310243 上传时间:2023-01-30 格式:DOCX 页数:29 大小:79.78KB
下载 相关 举报
温度控制系统课程设计.docx_第1页
第1页 / 共29页
温度控制系统课程设计.docx_第2页
第2页 / 共29页
温度控制系统课程设计.docx_第3页
第3页 / 共29页
温度控制系统课程设计.docx_第4页
第4页 / 共29页
温度控制系统课程设计.docx_第5页
第5页 / 共29页
点击查看更多>>
下载资源
资源描述

温度控制系统课程设计.docx

《温度控制系统课程设计.docx》由会员分享,可在线阅读,更多相关《温度控制系统课程设计.docx(29页珍藏版)》请在冰豆网上搜索。

温度控制系统课程设计.docx

温度控制系统课程设计

前言之蔡仲巾千创作

创作时间:

二零二一年六月三十日

温度是一种最基本的环境参数,日常生活和工农业生产中经常要检测温度.传统的方式是采纳热电偶或热电阻,可是由于模拟温度传感器输出为模拟信号,必需经过AD转换环节获得数字信号后才华与单片机等微处置器接口,使得硬件电路结构复杂,制作本钱较高.近年来,美国DALLAS公司生产的DSI18B20为代表的新型单总线数字式温度传感器以其突出优点广泛使用于仓储管理、工农业生产制造、气象观测、科学研究以及日常生活中.

随着科学技术的不竭进步与发展,温度传感器的种类日益繁多,数字温度传感器更因适用于各种微处置器接口组成的自动温度控制系统具有可以克服模拟传感器与微处置器接口时需要信号调理电路和A/D转换器的弊端等优点,被广泛应用于工业控制、电子测温计、医疗仪器等各种温度控制系统中.其中,比力有代表性的数字温度传感器有DS1820、MAX6575、DS1722、MAX6635等.

智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的.它是微电子技术、计算机技术和自动测试技术(ATE_)的结晶.目前,国际上已开发出多种智能温度传感器系列产物.智能温度传感器内部包括温度传感器、A/D传感器、信号处置器、存储器(或寄存器)和接口电路.有的产物还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM).智能温度传感器能输出温度数据及相关的温度控制量,适配各种微控制器(MCU),而且可通过软件来实现测试功能,即智能化取决于软件的开发水平.

为了准确获取现场的温度和方便现场控制,本系统采纳了软硬件结合的方式进行设计,利用LED数码管显示温度,利用DS18B20检测以后的温度值,通过和设定的参数进行比力,若实测温度高于设定温度,则通过555按时器发生频率可变的报警信号,若实测温度低于设定温度,则加热电路自动启动,达到设定温度后停止.在软件部份,主要是设计系统的控制流程和实现过程,以及各个芯片的底层驱动设计已达到所要求的功能.在近端与远端通信过程中,采纳串行MAX232标准,实现PC机与单片机间的数据传输.

1.总体方案设计

随着电子财富的高速化发展,电子产物的集成化水平也越来越高,智能化的产物也日渐增多,温度测控系统也从传统化的产物向智能化的产物方向发展.

本次课程设计中,我设计的就是一个温度控制系统,其设计思想是利用单片机作为主要的控制器件,LED数码管做为电路的显示部份,外加报警电路和自动加热电路,当温度低于设定值20度时,加热器加热.加热到20度时,加热器自动停止加热.当温度高于设定值25度时,报警电路报警.从而实现自动控制温度在20到25度之间.

1.1系统的工作原理

在温控系统中,需要将温度的变动转化为对应的电信号的变动,选用AT89S52单片机为中央处置器,通过温度传感器对空气进行温度收集,将收集到的温度信号传输给单片机,再由单片机控制显示器,并比力收集温度与设定温度是否一致,然后驱动机电加热或降温循环对空气进行处置,从而模拟实现空调控制单位的工作情况.

工作流程说明如下:

开始,先接通电源,LED就自动显示出以后温度.

当温度值低于设定值20度时,加热器加热.加热到20度时,加热器自动停止加热.当温度高于设定值25度时,报警电路报警.

系统的主要技术指标如下:

测温范围:

-10℃~+100℃;℃.系统的原理框架图,如图1所示.

图1系统原理框图

1.2系统的方案比力

在日常生活中,丈量温度的方案有很多,智能温度测控系统的设计方法也不胜枚举.有工业级另外温度控制系统,有商业的温度控制系统以及民用的温度控制系统.由于身边的条件以及元器件的限制,在这里选择设计民用的智能温度控制系统.

方案一:

以热电偶作为温度传感器,AD模数转换,LED作为显示器,采纳矩阵键盘,用AT89C51作为主控芯片.在该方案中,热电偶的丈量范围广,而且精度也很好,其灵敏度也很高,可是其价格高,还需要增加相应的外围电路,给硬件电路的设计带来了一定的困难,该温度传感器实用于工业级另外温度控制,而本系统是民用级另外,丈量的范围也不高;AD模数转换的转换速率和分辨率也会给丈量的温度值带来一定的影响;LED显示,则过于传统化,价格也较贵,其显示的位数很有限,若要增加功能,会给设计带来很年夜的困难.

方案二:

以DS18B20作为温度传感器,LED数码管作为显示屏,用AT89S52作为主控芯片.在该方案中,温度传感器DS18B20在日常生活中应用很广泛,器价格较之热电偶也很廉价,丈量的精度也能达到民用的要求,其集成化的水平更高,不需要外围的处置电路.即可将模拟信号转换为电信号;LED数码显示屏读数方便,而且比力清晰;主控芯片采纳AT89S52的兼容的电平兼容性更好,可利用的资源也更多.

1.3系统方案简直定

单片机芯片的选择

在单片机控制中,经常使用的ATMEL公司单片机种类有AT89C51、AT89C52、AT89S51、AT89S52,都兼容MCS-51单片机.对AT89C51,是一种带4K字节闪存可编程可擦除只读存储器(FPEROM—FlashProgrammableandErasableReadOnlyMemory)的低电压,高性能CMOS8位微处置器,128×8位内部RAM,32可编程I/O线,两个16位按时器/计数器,5个中断源等主要特性.相比而言,AT89C52有8K的ROM,256B的RAM,还增加一个按时器/计数器2,自然价格比C51略高.而相对而言,S系列的单片机具有在线编程下载(ISP)功能和看门狗,而且运行的速度的最高频率达到33MHZ,使得运行速度更快,自然价格比C系列的要高2元左右.可是当在对电路进行调试时,由于法式的毛病修改或对法式的新增功能需要烧入法式时,S系列的不需要对芯片屡次拔插,节省了调试的时间.

综合考虑以上种种因素,由于考虑到产物的本钱,在同样能完成我们所要求的功能时,自然会选择容易把持和扩展的AT89S52,这样更容易把产物推向市场.可是在实验室的的调试中,我们依然可以用AT89C51,这样就方便了我们的硬件调试,同样降低了开发产物的本钱.

显示模块的选择

罕见的文字、图像显示屏主要有LED(LightEmittingDiode)显示屏,LCD(LiquidCrystalDisplay),LED点阵数码管显示.LED显示器与LCD显示器相比,LED在亮度、功耗、可视角度和刷新速率等方面,都更具优势.LED与LCD的功耗比年夜约为10:

1,而且更高的刷新速率使得LED在视频方面有更好的性能暗示,能提供宽达160°的视角,可以显示各种文字、数字、黑色图像及动画信息,也可以播放电视、录像、VCD、DVD等黑色视频信号,多幅显示屏还可以进行联网播出.因此本次显示模块设计中选用LED数码显示管.

数据收集系统的选择

本课程设计要求对温度进行丈量,待丈量一般不能直接被转换成数字量,通常要进行放年夜、特性赔偿、滤波等环节的预处置.被测信号往往因为幅值较小,而且可能还含有过剩的高频分量等原因,不能直接送给A/D转换器,需对其进行需要的处置,即信号调理.如对信号进行放年夜、衰减、滤波等.为减少电路的繁复,故本测控系统数据收集系统中采纳集成温度收集元件与A/D转换元件配合使用.硬件选择为DS18B20数字温度传感器.

数据收集方式有顺序控制数据收集和法式控制数据收集.

方案一:

顺序控制数据收集,顾名思义,它是对各路被收集参数,按时间顺序依次轮流采样.系统的性能完全由硬件设备决定.在每次的收集过程中,所收集参数的数目、采样点数、采样速率、采样精度都固定不变.若要改变这些指标,需改变接线或更换设备方能实现.

方案二:

法式控制数据收集,由硬件和软件两部份组成.,据分歧的收集需要,在法式存储器中,寄存若干种信号收集法式,选择相应的收集法式进行收集工作,还可通过编新的法式,以满足分歧采样任务的要求.

由于顺序控制数据收集方式缺乏通用性和灵活性,所以本设计中选用法式控制数据收集方式.

复位电路

1.复位电路

单片机在开机时都需要复位,以便中央处置器CPU以及其他功能部件都处于一个确定的初始状态,并从这个状态开始工作.AT89S51的RST引脚是复位信号的输入端.复位电平是高电平有效,继续时间要有24个时钟周期以上.本系统中单片机时钟频率为12MHz则复位脉冲至少应为2us.

方案一:

上电复位电路

上电瞬间,RST真个的电位与Vcc相同,随着电容的逐步充电,充电电流减小,RST电位逐渐下降.上电复位所需的最短时间是振荡器建立时间加上二个机器周期,在这段时间里,振荡建立时间不超越10ms.复位电路的典范参数为:

C取10uF,R取8.2k,故时间常数

=RC=10

10

10

=82ms

以满足要求.

方案二:

外部复位电路

按下开关时,电源通过电阻对外接电容进行充电,使RES端为高电平,复位按钮松开后,电容通过下拉电阻放电,逐渐使RET端恢复低电平.

方案三:

上电外部复位电路

典范的上电外部复位电路是既具有上电复位又具有外部复位电路,上电瞬间,C与Rx构成充电电路,RST引脚呈现正脉冲,只要RST坚持足够的高电平,就能使单片机复位.

一般取C=22uF,R=200,Rx=1k,此时

=22

10

1

10

=22ms

当按下按钮,RST呈现

5=4.2V时,使单片机复位.

本设计采纳方案三.

在AT89S52内部有一个用于构成振荡器的高增益反相放年夜器.引脚XTAL1(19)、XTAL2(18)分别是此放年夜器的输入端和输出端.

方案一:

内部方式

与作为反馈元件的片外晶体或陶瓷谐振器一起组成一个自激振荡器.

方案二:

外部方式

外部振荡器信号的接法与芯片类型有关.CMOS工艺的MCU其XTAL1端接外部时钟信号,XTAL2端可悬空.HMOS工艺的MCU则XTAL2端接外部时钟信号,XTAL1端须接地.

本设计采纳方案一.

通信接口电路的选择

串行通信有同步和异步两种工作方式.

方案一:

同步方式要求发送与接受坚持严格同步,由于串行传输逐位按顺序进行,为了约定命据是由哪一位开始传输,需设定同步字符.此方式传输速度快,但硬件复杂.

方案二:

异步方式,规定了数据传输格式,每个数据均以相同的帧格式传送,每帧信息由起始位、数据位、奇偶效验位和停止位组成.帧与帧间用高电平分隔开,但每帧均需附加位,降低了传输效率.

异步通信依靠起始位、停止位坚持通信同步.对硬件的要求低,实现起来比力简单、灵活,适用于数据的随机发送/接收,一般适用于50~9600bps的低速串行通信.

RS-232规定的电平和一般微处置器的逻辑电平纷歧致,必需进行电平转换.

方案一:

采纳MCl488和MCl489芯片的转换接口

MCl488和MCl489芯片为早期的RS-232至TTL逻辑电平的转换芯片,需要±12V电压,而且功耗较年夜,不适合用于低功耗的系统.

方案二:

采纳MAX232芯片的转换接口

MAX232是MAXIM公司的产物,包括两路驱动器和接收器的RS-232转换芯片.芯片内部有一个电压转换器,可以把输入的+5V电压转换为RS-232接口所需的±10V电压,尤其适用于没有±12V的单电源系统.

由于RS-232信号电平与MSC-51型单片机信号电平(TTL电平)纷歧致,因此

在本次设计中选用MAX232芯片.

电路设计最终方案

综上各方案所述,对此次作品的方案选定:

采纳AT89S52作为主控制系统;LED数码显示器作为显示,DS18B20用来收集温度信息,附带加热电路和报警电路,采纳MAX232芯片的串行接口电路,以及单向桥式直流稳压电路构成的电源.

2系统硬件设计

2.1系统硬件概述

本电路是由AT89S52单片机为控制核心,具有可编程功能,低功耗,能在3V超高压工作;单线集成温度传感器共同的单线接口只需1个接口引脚即可通信,多点能力使分布式温度检测应用得以简化,不需要外部元件,可用数据线供电,不需备份电源;温度显示部份由LED数码显示屏显示;报警电路采纳555发生变动的频率,在通过功率放年夜器驱动蜂鸣器;加热电路采纳机电驱动.

2.2AT89S52最小系统模块设计

AT89S52是美国ATMEL公司生产的低电压,高性能CMOS8位单片机,片内含4kbytes的可反复擦写的只读法式存储器(PEROM)和128bytes的随机存取数据存储器(RAM),器件采纳ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处置器(CPU)和Flash存储单位,功能强年夜AT89S52单片机可为您提供许多高性价比的应用场所,可灵活应用于各种控制领域.

图2-1AT89S52管脚图

主要性能参数:

·与MCS-51产物指令系统完全兼容

·4k字节可重擦写Flash闪速存储器

·1000次擦写周期

·全静态把持:

0Hz-24MHz

·三级加密法式存储器

·128×8字节内部RAM

·32个可编程I/O口线

·2个16位按时/计数器

·6个中断源

·可编程串行UART通道

·低功耗空闲和失落电模式

功能特性概述:

AT89S52提供以下标准功能:

4k字节Flash闪速存储器,128字节内部RAM,32个I/O口线,两个16位按时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路.同时,AT89S52可降至0Hz的静态逻辑把持,并支持两种软件可选的节电工作模式.空闲方式停止CPU的工作,但允许RAM,按时/计数器,串行通信口及中断系统继续工作.失落电方式保管RAM中的内容,但振荡器停止工作并禁止其它所有部件工作直到下一个硬件复位.

引脚功能说明:

·Vcc:

电源电压

·GND:

·P0口:

是一组8位漏极开路型双向I/O口,也即地址/数据总线复用口.作为输出口用时,每位能吸收电

流的方式驱动8个TTL逻辑门电路,对端口写“1”可作为高阻抗输入端用.

在访问外部数据存储器或法式存储器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻.

在FIash编程时,P0口接收指令字节,而在法式校验时,输出指令字节,校验时,要求外接上拉电阻.

·P1口:

P1是一个带内部上拉电阻的8位双向I/O口,P1的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路.对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口.作输入口使用时,因为内部存在上拉电阻,某个引脚

被外部信号拉低时会输出一个电流(IIL)..FIash编程和法式校验期间,P1接收低8位地址.

·P2口:

P2是一个带有内部上拉电阻的8位双向I/O口,P2的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路.对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL).

在访问外部法式存储器或16位地址的外部数据存储器(例如执行MOVX@DPTR指令)时,P2口送出高8位地址数据.在访问8位地址的外部数据存储器(如执行MOVX@RI指令)时,P2口线上的内容(也即特殊功能寄存器(SFR)区中R2寄存器的内容),在整个访问期间不改变.Flash编程或校验时,P2亦接收高位地址和其它控制信号.

·P3口:

P3口是一组带有内部上拉电阻的8位双向I/O口.P3口输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路.对P3口写入“1”时,它们被内部上拉电阻拉高并可作为输入端口.作输入端时,被外部拉低的P3口将用上拉电阻输出电流(IIL).,P3口除作为一般的I/O口线外,更重要的用途是它的第二功能,如下表所示:

端口引脚

第二功能

P3.0

RXD(串行输入口)

P3.1

TXD(串行输出口)

P3.2

————

INT0(外中断0)

P3.3

——

INT1(外中断1)

P3.4

T0(按时/计数器0外部输入)

P3.5

T1(按时/计数器1外部输入)

P3.6

———

WR(外部数据存储器写选通)

P3.7

———

RD(外部数据存储器读选通)

表1P3口第二功能

P3口还接收一些用于Flash闪速存储器编程和法式校验的控制信号.

·RST:

复位输入.当振荡器工作时,RST引脚呈现两个机器周期以上高电平将使单片机复位.

·ALE/PROG:

当访问外部法式存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8位字

节.即使不访问外部存储器,ALE仍以时钟振荡频率的l/6输出固定的正脉冲信号,因此它可对外输出时钟或用于按时

目的.要注意的是:

每当访问外部数据存储器时将跳过一个ALE脉冲.

如有需要,可通过对特殊功能寄存器(SFR)区中的8EH单位的DO位置位,可禁止ALE把持.该位置位后,只有

一条MOVX和MOVC指令ALE才会被激活.另外,该引脚会被微弱拉高,单片机执行外部法式时,应设置ALE无效.

·EA/VPP:

外部访问允许.欲使CPU仅访问外部法式存储器(地址为0000H—FFFFH),EA端必需坚持低电平(接

地).需注意的是:

如果加密位LB1被编程,复位时内部会锁存EA端状态.

如EA端为高电平(接VCC端),CPU则执行内部法式存储器中的指令.

Flash存储器编程时,该引脚加上+12V的编程允许电源Vpp,固然这必需是该器件是使用12V编程电压Vpp.

·XTAL1:

振荡器反相放年夜器的及内部时钟发生器的输入端.

·XTAL2:

振荡器反相放年夜器的输出端.

2.3振荡源和复位电路设计

复位电路

单片机的复位是靠外部电路实现的.无论是HMOS还是CHMOS型,在振荡器正运行的情况下,RST引脚坚持二个机器周期以上时间的高电平,系统复位.在RST端呈现高电平的第二个周期,执行内部复位,以后每个周期复位一次,直至RST端变低.本文采纳上电外部复位电路,如图2-4所示,相关参数为典范值.

图2-2复位电路

振荡源电路

内部方式时钟电路如图2-5所示.外接晶体以及电容

构成并联谐振电路,接在放年夜器的反馈回路中,内部振荡器发生自激振荡,一般晶振可在2~12MHz之间任选.对外接电容值虽然没有严格的要求,但电容的年夜小几多会影响振荡频率的高低、振荡器的稳定性、起振的快速性和温度的稳定性.外接晶体时,

通常选30pF左右;外接陶瓷谐振器时,

的典范值为47pF.

图2-3振荡电路

2.4显示模块设计

本次设计中显示模块部份选择的是LED数码显示屏.

液晶显示的原理是利用液晶的物理特性,通过电压对其显示区域进行控制,有电就有显示,这样即可以显示出图形.液晶显示器具有厚度薄、适用于年夜规模集成电路直接驱动、易于实现全黑色显示的特点,目前已经被广泛应用在便携式电脑、数字摄像机、PDA移动通信工具等众多领域.

发光二极管(LightEmittingDiode,LED)是一种由某些特殊的半导体资料制作成的PN结.当正向偏置时,由年夜量的电子—空穴复合,LED释放出热量而发光.LED的正向工作压降一般为1.2-2.6V,发光工作电流为5-20mA,发光强度基本上与正向电流成正比.LED显示器由发光二极管构成,具有工作电压低、体积小、寿命长(约10万小时)、响应速度快(小于1us),颜色丰富(红、黄、绿等)等特点,是只能仪器最经常使用的显示器.LED显示器分为断码式显示器和点阵式显示器.

1.断码式LED显示器由数个LED组成一个阵列,并封装于一个标准尺寸的管壳内,就形成了LED数码字符显示器.这类显示器的结构主要有:

有7个LED(加上一个小数点为8个LED)构成的“日”字形7段(或8段)数码显示器;由12个LED构成的“田”字形数码显示器;由16个LED构成的“米”字形数码显示器.LED显示器的显示方式有静态显示和静态显示之分.

(1)静态显示方式是指显示器在显示某一字符时,相应段的发光二极管恒定导通或截止,使显示字符的字段连续发光.在静态方式中,每位数码管都应有各自的驱动器件.为了便于法式控制,在选择LED驱动器件时,往往选择带锁存功能的器件,用以锁存各自待显示数码.因此,静态显示系统在每一次输出后能够坚持不变,仅在待显示数码需要改变时,才更新其数字显示器中锁存的内容.这种显示方式的优点是亮度高,控制法式简单,显示稳定可靠;缺点是功耗年夜,当显示的位数较多时,占用的I/O端口较多,此时可以采纳静态显示方式.

(2)静态显示方式:

实用于显示位数较多的情况.所有位的段选线并联起来,由一个8位I/O端口控制,而各位的共阳极或共阴极分别由相应的I/O端口控制,形各位的轮流选通,即LED显示部份轮流工作,每次只能使一个器件显示1-5ms.由于人的视觉暂留现象和发光二极管的余晖效应,人眼扔感觉所有的器件都在同时显示,获得稳定的视觉效果.此种显示方式的优点是占用I/O端口少,随着高亮度LED数码管的呈现,静态显示同样可以打到很好的显示效果.

静态显示方式的实现有法式控制扫描和按时中断扫描两种.法式控制扫描方式要占

用许多CPU时间,在计算机的任务较重时,将影响CPU的工作效率,所以在实际应用中常采纳按时中断扫描方式.这种方式是每隔一按时间让一位数码管显示,假设有8位数码管,则显示扫描周期为8ms.

2.点阵式LED显示器:

8段LED显示器显示的数码和符号比力简单,显示更多种类且字符逼真的字符则比力困难.点阵式LED显示器是以点阵格式进行显示的,其优点是显示的符号比力逼真,更易识别,缺乏之处是接口电路以及控制法式比力复杂.点阵式

显示器一般有4x7、5x7、7x9点阵等形式.最经常使用的是5x7点阵,它由35个发光二极管组成5列x7行的矩阵.用多个点阵式LED显示器可以组成年夜屏幕LED显示屏,用来显示汉字、图形和表格,而且能发生各种动画效果.这是新闻媒介和广告宣传的有力工具,其应用也越来越普遍.

在本次设计中使用的是点段式静态显示LED数码管显示器.

2.5串行接口模块设计

AT89S52有一个全双工的串行口,所以单片机和PC之间可以方便地进行串口通讯.进行串行通信时要满足一定的条件,如PC的串口是RS232电平的,而单片机的串口是TTL电平的,两者之间必需有一个电平转换电路,这里用专用芯片MAX232进行转换,用专用芯片更简单可靠.MAX232如图2-10所示.

它包括两路接收器和驱动器,内部有一个电源电压变换器,可以把输入的+5V电压变换位RS-232输出电平所需的+10V电压.所以,用该芯片接口的串行通信只需单一的+5V电源就可以了.其应用性更强.上半部电容

是电源变换部份.实际应用中,器件对电源噪声很敏感.因此,

对地需要加去耦电容

其值为1.0uF.电容

取同样数值的电

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工作范文 > 行政公文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1