新课标物理高考卷1含参考答案.docx

上传人:b****5 文档编号:8288958 上传时间:2023-01-30 格式:DOCX 页数:19 大小:244.93KB
下载 相关 举报
新课标物理高考卷1含参考答案.docx_第1页
第1页 / 共19页
新课标物理高考卷1含参考答案.docx_第2页
第2页 / 共19页
新课标物理高考卷1含参考答案.docx_第3页
第3页 / 共19页
新课标物理高考卷1含参考答案.docx_第4页
第4页 / 共19页
新课标物理高考卷1含参考答案.docx_第5页
第5页 / 共19页
点击查看更多>>
下载资源
资源描述

新课标物理高考卷1含参考答案.docx

《新课标物理高考卷1含参考答案.docx》由会员分享,可在线阅读,更多相关《新课标物理高考卷1含参考答案.docx(19页珍藏版)》请在冰豆网上搜索。

新课标物理高考卷1含参考答案.docx

新课标物理高考卷1含参考答案

2015年高考物理新课标1

一、选择题(每题6分,第14-18题只有一个选项正确,第19-21题有多项符正确,)

14.两相邻匀强磁场区域的磁感应强度大小不等、方向平行。

一速度方向与磁感应强度方向垂直的带电粒子(不计重力),从较强磁场区进入到较弱磁场区后,粒子的

A.轨道半径减小,角速度增大B.轨道半径减小,角速度减小

C.轨道半径增大,角速度增大D.轨道半径增大,角速度减小

15.如图,直线a、b和c、d是处于匀强磁场中的两组平行线,M、N、P、Q是它们的交点,四点处的电势分别为φM、φN、φP、φQ,一电子由M点分别运动到N点和P点的过程中,电场力所做的负功相等,则

A.直线a位于某一等势面内,φM>φQ

B.直线c位于某一等势面内,φM>φN

C.若电子由M点运动到Q点,电场力做正功

D.若电子由P点运动到Q点,电场力做负功

16.一理想变压器的原、副线圈的匝数比为3:

1,在原、副线圈的回路中分别接有阻值相同的电阻,原线圈一侧接在电压为220V的正弦交流电源上,如图所示,设副线圈回路中电阻两端的电压为U,原、副线圈回路中电阻消耗的功率的比值为k,则

A.

B.

C.

D.

17.一半径为R,粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ水平。

一质量为m的质点自P点上方高度R处由静止开始下落,恰好从P点进入轨道。

质点滑到最低点N时,对轨道压力为4mg,g为重力加速度的大小。

用W表示质点从P点运动到N点的过程中克服摩擦力所做的功。

A.

,质点恰好可以到达Q点

B.

,质点不能到达Q点

C.

,质点到达Q后,继续上升一段距离

D.

,质点到达Q后,继续上升一段距离

18.一带有乒乓球发射机的乒乓球台如图所示。

水平台面的长和宽分别为L1和L2,中点球网高度为h。

发射机安装于台面右侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h,不计空气阻力,重力加速度大小为g。

若乒乓球的发射速率v在某范围内,通过选择合适的方向,就能使乒乓球球网右侧的台面上,则v的最大取值范围是

A.

B.

C.

D.

19.1824年,法国科学家阿拉果完成了著名的“圆盘实验”。

实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图所示。

实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的数值轴旋转时,磁针也随着一起转动起来,但略有滞后。

下列说法正确的是

A.圆盘产生了感应电动势

B.圆盘内的涡电流产生的磁场导致磁针转动

C.在圆盘转动过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化

D.圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动

20.如图(a),一物块在t=0时刻滑上一固定斜面,其运动的v-t图线如图(b)所示。

若重力加速度及图中的v0、v1、t1均为已知量,则可求出

A.斜面的倾角

B.物块的质量

C.物块和斜面间的动摩擦因数

D.物块沿斜面向上滑到的最大高度

21.我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4m高出做一次悬停(可认为相对于月面静止);最后关闭发动机,探测器自由下落。

已知探测器的质量为1.3×103kg,地球质量约为月球质量的81倍,地球半径约为月球半径的3.7倍,地球表面的重力加速度大小约为9.8m/s2。

则此探测器

A.在着陆前的瞬间,速度大小约为8.9m/s

B.悬停时受到的反作用力约为2×103N

C.从离开近月轨道到着陆这段时间内,机械能守恒

D.在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的速度

二、非选择题

22.(6分)某物理小组的同学设计了一个粗制玩具小车通过凹形桥最低点的速度的实验。

所用器材有:

玩具小车、压力托盘秤、凹形桥模拟器(圆弧部分的半径为R=0.20m)。

完成下列填空:

(1)将凹形桥模拟器静置于托盘秤上,如图(a)所示,托盘秤的示数为1.00kg;

(2)将玩具小车静置于凹形桥模拟器最低点时,托盘秤的示数如图(b)所示,该示数为_____kg;

(3)将小车从凹形桥模拟器某一位置释放,小车经过最低点后滑向另一侧,此过程中托盘秤的最大示数为m;多次从同一位置释放小车,记录各次的m值如下表所示:

序号

1

2

3

4

5

m(kg)

1.80

1.75

1.85

1.75

1.90

(4)根据以上数据,可求出小车经过凹形桥最低点时对桥的压力为_____N;小车通过最低点时的速度大小为_______m/s。

(重力加速度大小取9.80m/s2,计算结果保留2位有效数字)

23.(9分)图(a)为某同学改装和校准毫安表的电路图,其中虚线框内是毫安表的改装电路。

 

(1)已知毫安表表头的内阻为100Ω,满偏电流为1mA;R1和R2为阻值固定的电阻。

若使用a和b两个接线柱,电表量程为3mA;若使用a和c两个接线柱,电表量程为10mA。

由题给条件和数据,可求出R1=Ω,R2=Ω

(2)现用—量程为3mA、内阻为150Ω的标准电流表

对改装电表的3mA挡进行校准,校准时需选取的刻度为0.5、1.0、1.5、2.0、2.5、3.0mA。

电池的电动势为1.5V,内阻忽略不计;定值电阻R0有两种规格,阻值分别为300Ω和1000Ω;滑动变阻器R有两种规格,最大阻值分别为750Ω和3000Ω。

则R0应选用阻值为Ω的电阻,R应选用最大阻值为Ω的滑动变阻器。

(3)若电阻R1和R2中有一个因损坏而阻值变为无穷大,利用图(b)的电路可以判断出损坏的电阻。

图(b)中的R’为保护电阻,虚线框内未画出的电路即为图(a)虚线框内的电路。

则图中的d点应和接线柱(填”b”或”c”)相连。

判断依据是:

24.(12分)如图,一长为10cm的金属棒ab用两个完全相同的弹簧水平地悬挂在匀强磁场中;磁场的磁感应强度大小为0.1T,方向垂直于纸面向里;弹簧上端固定,下端与金属棒绝缘,金属棒通过开关与一电动势为12V的电池相连,电路总电阻为2Ω。

已知开关断开时两弹簧的伸长量均为0.5cm;闭合开关,系统重新平衡后,两弹簧的伸长量与开关断开时相比均改变了0.3cm,重力加速度大小取10m/s2。

判断开关闭合后金属棒所受安培力的方向,并求出金属棒的质量。

 

25.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m,如图(a)所示。

时刻开始,小物块与木板一起以共同速度向右运动,直至时木板与墙壁碰撞(碰撞时间极短)。

碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板。

已知碰撞后1s时间内小物块的图线如图(b)所示。

木板的质量是小物块质量的15倍,重力加速度大小g取10m/s2。

(1)木板与地面间的动摩擦因数及小物块与木板间的动摩擦因数;

(2)木板的最小长度;

(3)木板右端离墙壁的最终距离。

 

33.【物理—选修3-3】(15分)

(1)(5分)下列说法正确的是(填正确答案标号,选对一个得2分,选对2个得4分,选对3个得5分。

每选错一个扣3分,最低得分为0分)

A.将一块晶体敲碎后,得到的小颗粒是非晶体

B.固体可以分为晶体和非晶体两类,有些晶体在不同的方向上有不同的光学性质

C.由同种元素构成的固体,可能会由于原子的排列方式不同而成为不同的晶体

D.在合适的条件下,某些晶体可以转化为非晶体,某些非晶体也可以转化为晶体

E.在熔化过程中,晶体要吸收热量,但温度保持不变,内能也保持不变

(2)(10分)如图,一固定的竖直气缸有一大一小两个同轴圆筒组成,两圆筒中各有一个活塞,已知大活塞的质量为m1=2.50kg,横截面积为s1=80.0cm2,小活塞的质量为m2=1.50kg,横截面积为s2=40.0cm2;两活塞用刚性轻杆连接,间距保持为L=40.0cm,气缸外大气压强为p=1.00×105Pa,温度为T=303K。

初始时大活塞与大圆筒底部相距L/2,两活塞间封闭气体的温度为T1=495K,现气缸内气体温度缓慢下降,活塞缓慢下移,忽略两活塞与气缸壁之间的摩擦,重力加速度

取10m/s2,求

(i)在大活塞与大圆筒底部接触前的瞬间,缸内封闭气体的温度

(ii)缸内封闭的气体与缸外大气达到热平衡时,缸内封闭气体的压强

 

34【物理—选修3-4】(15分)

(1)在双缝干涉实验中,分布用红色和绿色的激光照射同一双缝,在双缝后的屏幕上,红光的干涉条纹间距△x1与绿光的干涉条纹间距△x2相比△x1△x2(填“>”“<”或“=”)。

若实验中红光的波长为630nm,双缝到屏幕的距离为1m,测得第一条到第6条亮条纹中心间的距离为10.5mm,则双缝之间的距离为mm。

(2)(10分)甲乙两列简谐横波在同一介质中分别沿x轴正向和负向传播,波速均为25cm/s,两列波在t=0时的波形曲线如图所示,求

)t=0时,介质中偏离平衡位置位移为16cm的所有质点的x坐标

)从t=0开始,介质中最早出现偏离平衡位置位移为-16cm的质点的时间

 

35、

(1)(5分)在某次光电效应实验中,得到的遏制电压U0与入射光的频率v的关系如图所示,若该直线的斜率和截距分别为k和b,电子电荷量的绝对值为e,则普朗克常量可表示为,所用材料的逸出功可表示为。

(2)(10分)如图,在足够长的光滑水平面上,物体A、B、C位于同一直线上,A位于B、C之间。

A的质量为m,B、C的质量都为M,三者都处于静止状态,现使A以某一速度向右运动,求m和M之间满足什么条件才能使A只与B、C各发生一次碰撞。

设物体间的碰撞都是弹性的。

 

2015年新课标1

答案

二、选择题(每题6分,第14-18题只有一个选项符合要求,第19-21题有多项符合题目要求,)

14.两相邻匀强磁场区域的磁感应强度大小不等、方向平行。

一速度方向与磁感应强度方向垂直的带电粒子(不计重力),从较强磁场区进入到较弱磁场区后,粒子的

A.轨道半径减小,角速度增大B.轨道半径减小,角速度减小

C.轨道半径增大,角速度增大D.轨道半径增大,角速度减小

正确答案:

D

解析:

由于磁场方向与粒子速度方向垂直,所以粒子只受洛伦兹力作用做匀速圆周运动,由

得到轨道半径r=mv/Bq;从较强磁场区域进入到较弱磁场区域后,磁感应轻度B减小,其余量不变,所以半径r增大;由v=rω知此时r与ω成反比,所以角速度ω减小。

所以本题D选项正确。

15.如图,直线a、b和c、d是处于匀强磁场中的两组平行线,M、N、P、Q是它们的交点,四点处的电势分别为φM、φN、φP、φQ,一电子由M点分别运动到N点和P点的过程中,电场力所做的负功相等,则

A.直线a位于某一等势面内,φM>φQ

B.直线c位于某一等势面内,φM>φN

C.若电子由M点运动到Q点,电场力做正功

D.若电子由P点运动到Q点,电场力做负功

正确答案:

B

解析:

电子带负电荷,从M到N和P做功相等,说明电势差相等,即N和P的电势相等,匀强电场中等势线为平行的直线,所以NP和MQ分别是两条等势线,从M到N,电场力对负电荷做负功,说明MQ为高电势,NP为低电势。

所以直线c位于某一等势线内,但是

,选项A错,B对。

若电子从M点运动到Q点,初末位置电势相等,电场力不做功,选项C错。

电子作为负电荷从P到Q即从低电势到高电势,电场力做正功,电势能减少,选项D错。

所以本题选项B正确。

16.一理想变压器的原、副线圈的匝数比为3:

1,在原、副线圈的回路中分别接有阻值相同的电阻,原线圈一侧接在电压为220V的正弦交流电源上,如图所示,设副线圈回路中电阻两端的电压为U,原、副线圈回路中电阻消耗的功率的比值为k,则

A.U=60V,k=B.U=22V,k=

C.U=60V,k=D.U=22V,k=

正确答案:

A

解析:

原副线圈电压比等于原副线圈匝数比3:

1,而原副线圈电流比等于原副线圈匝数的反比为1:

3,由题中条件可知副线圈电压为u,电流I2=u/R,则原线圈电压为3u,电流I1=u/3R,那么原电路的输入电压220V=3u+uR/3R,所以U=66V;原副线圈电阻消耗的功率根据P=I2R,且电阻值相等,电流之比为1:

3,可得功率之比为1:

9,所以本题A选项正确。

17.一半径为R,粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ水平。

一质量为m的质点自P点上方高度R处由静止开始下落,恰好从P点进入轨道。

质点滑到最低点N时,对轨道压力为4mg,g为重力加速度的大小。

用W表示质点从P点运动到N点的过程中克服摩擦力所做的功。

A.W=,质点恰好可以到达Q点

B.W>,质点不能到达Q点

C.W=,质点到达Q点后,继续上升一段距离

D.W>,质点到达Q点后,继续上升一段距离

正确答案:

C

解析:

根据动能定理得P点的动能EKP=mgR,经过N点时,半径方向的合力提供向心力,即4mg-mg=mv2/R,得到N点的动能3mgR/2,在P到N的过程中由动能定理得到摩擦力做功W=-mgR/2;在质点运动过程中,根据左右对称,所以在同一高度,摩擦力做功使得右半幅的速度较小,质点对轨道的压力也小,使得摩擦力也变小,所以摩擦力做功变小,那么从N到Q的过程中,摩擦力做功W'

所以本题C选项正确。

18.一带有乒乓球发射机的乒乓球台如图所示。

水平台面的长和宽分别为L1和L2,中点球网高度为h。

发射机安装于台面右侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h,不计空气阻力,重力加速度大小为g。

若乒乓球的发射速率v在某范围内,通过选择合适的方向,就能使乒乓球球网右侧的台面上,则v的最大取值范围是

A.B.

C.D.

正确答案:

D

解析:

乒乓球无论如何发射,都做平抛运动,距离台面的高度决定了的平抛的时间,水平位移最小时,轨迹恰好蹭过球网,此时下落高度为2h,水平位移为L1/2,可求出时间

,对应最小速度

;水平最大位移为斜向对方台面的两个角发射,由几何关系得出此时的

,对应最大速度

,所以本题D选项正确。

19.1824年,法国科学家阿拉果完成了著名的“圆盘实验”。

实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图所示。

实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的数值轴旋转时,磁针也随着一起转动起来,但略有滞后。

下列说法正确的是

A.圆盘产生了感应电动势

B.圆盘内的涡电流产生的磁场导致磁针转动

C.在圆盘转动过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化

D.圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动

正确答案:

AB

解析:

在圆盘转动过程中,半径方向的金属条切割磁感线,在圆心和边缘之间产生感应电动势,所以选项A正确;圆盘的发生电磁感应过程中,内部到圆心不同距离的位置的电势不同,就会产生涡流,所以B正确;圆盘转动时,内部磁感应强度和有效面积均不发生改变,所以磁通量也不会改变,所以C错误;同时整个圆盘对外呈现电中性,不会产生环形电流,所以D错误。

所以本题选项AB正确。

20.如图(a),一物块在t=0时刻滑上一固定斜面,其运动的v-t图线如图(b)所示。

若重力加速度及图中的v0、v1、t1均为已知量,则可求出

A.斜面的倾角

B.物块的质量

C.物块和斜面间的动摩擦因数

D.物块沿斜面向上滑到的最大高度

正确答案:

ACD

解析:

小球滑上斜面的初速度v0已知,向上滑行过程为匀变速直线运动,末

速度0,那么平均速度即v0/2,所以沿斜面向上滑行的最远距离s=v0t1/2,根据牛顿第二定律,向上滑行过程a1=g(sinθ+μcosθ),向下滑行a2=g(sinθ-μcosθ),整理可得gsinθ=(a1+a2)/2,从而可计算出斜面的倾斜角度θ以及动摩擦因数,选项AC对。

根据斜面的倾斜角度可计算出向上滑行的最大高度,选项D对。

仅根据速度时间

图像,无法找到物块质量,选项B错。

21.我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4m高出做一次悬停(可认为相对于月面静止);最后关闭发动机,探测器自由下落。

已知探测器的质量为1.3×103kg,地球质量约为月球质量的81倍,地球半径约为月球半径的3.7倍,地球表面的重力加速度大小约为9.8m/s2。

则此探测器

A.在着陆前的瞬间,速度大小约为8.9m/s

B.悬停时受到的反作用力约为2×103N

C.从离开近月轨道到着陆这段时间内,机械能守恒

D.在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的速度

正确答案:

BD

解析:

由黄金代换式GM=gR2,以及地球和月球自身的质量和半径的比值,可得到月球表面的重力加速度是地球表面重力加速度的1/6,所以探测器此时的重力

,选项B正确;探测器在落地时,近似做自由落体,所以落体瞬间速度满足v2=2g'h,不等于8.9m/s,所以A错误;探测器在离开轨道进行悬停过程中,需要推力做功,所以机械能不守恒,C选项错误;在近月轨道的线速度

,小于人造卫星的近地线速度,D选项正确。

所以本题BD选项正确。

三、非选择题

22.(6分)某物理小组的同学设计了一个粗制玩具小车通过凹形桥最低点的速度的实验。

所用器材有:

玩具小车、压力托盘秤、凹形桥模拟器(圆弧部分的半径为R=0.20m)。

完成下列填空:

(1)将凹形桥模拟器静置于托盘秤上,如图(a)所示,托盘秤的示数为1.00kg;

(2)将玩具小车静置于凹形桥模拟器最低点时,托盘秤的示数如图(b)所示,该示数为_____kg;

(3)将小车从凹形桥模拟器某一位置释放,小车经过最低点后滑向另一侧,此过程中托盘秤的最大示数为m;多次从同一位置释放小车,记录各次的m值如下表所示:

序号

1

2

3

4

5

m(kg)

1.80

1.75

1.85

1.75

1.90

(4)根据以上数据,可求出小车经过凹形桥最低点时对桥的压力为_____N;小车通过最低点时的速度大小为_______m/s。

(重力加速度大小取9.80m/s2,计算结果保留2位有效数字)

正确答案:

(1) 1.4

(2) 7.94(3) 1.4

解析:

(2)根据秤盘指针可知量程为10kg,指针所指示数为1.4kg。

(4)实验记录的托盘秤示数并不相同,为了减小误差,需要取平均值,即m=1.81kg,而模拟器的重力为G=9.8N,所以小车过最低点的压力mg-mg'=7.94N;根据径向合力提供向心力,求出最低点速度大小近似等于1.4m/s。

23.(9分)图(a)为某同学改装和校准毫安表的电路图,其中虚线框内是毫安表的改装电路。

 

(1)已知毫安表表头的内阻为100Ω,满偏电流为1mA;R1和R2为阻值固定的电阻。

若使用a和b两个接线柱,电表量程为3mA;若使用a和c两个接线柱,电表量程为10mA。

由题给条件和数据,可求出R1=Ω,R2=Ω

(2)现用—量程为3mA、内阻为150Ω的标准电流表

对改装电表的3mA挡进行校准,校准时需选取的刻度为0.5、1.0、1.5、2.0、2.5、3.0mA。

电池的电动势为1.5V,内阻忽略不计;定值电阻R0有两种规格,阻值分别为300Ω和1000Ω;滑动变阻器R有两种规格,最大阻值分别为750Ω和3000Ω。

则R0应选用阻值为Ω的电阻,R应选用最大阻值为Ω的滑动变阻器。

正确答案:

(1) 15

(2) 35(3) 300(4) 3000(5) C(6) 若电流表无示数,则说明R2断路,若电流表有示数,则说明R1断路。

解析:

(1)定值电阻与毫安表是并联关系,电压相等,电流和电阻成反比,若使用a、b两个接线柱,量程为3mA,则通过R1的电流为2mA,电流之比为1:

2,所以电阻之比为2:

1,可得电阻R1+R2=Rg/2=50Ω;若使用a、c两个接线柱,电表量程10mA,通过R1的电流为9mA,电流之比1:

9,所以电阻之比为9:

1,得到R1=(Rg+R2)/9,联立可得R1=15Ω,R2=35Ω。

(2)根据电流表校准的刻度,可知电路中总阻值最大为3000Ω,最小阻值为500Ω。

若定值电阻选择为1000Ω,则无法校准3.0mA;所以定值电阻选择300Ω。

由于最大阻值要达到3000Ω,所以滑动变阻器要选择3000Ω。

(3)因为只有一个损坏,所以验证R2是否损坏即可。

所以d点应和接线柱c相连,若电流表无示数,则说明R2短路,若电流表有示数,则说明R1断路。

24.(12分)如图,一长为10cm的金属棒ab用两个完全相同的弹簧水平地悬挂在匀强磁场中;磁场的磁感应强度大小为0.1T,方向垂直于纸面向里;弹簧上端固定,下端与金属棒绝缘,金属棒通过开关与一电动势为12V的电池相连,电路总电阻为2Ω。

已知开关断开时两弹簧的伸长量均为0.5cm;闭合开关,系统重新平衡后,两弹簧的伸长量与开关断开时相

比均改变了0.3cm,重力加速度大小取10m/s2。

判断开关闭合后金属棒所受安培力的方向,并求出金属棒的质量。

正确答案:

安培力方向竖直向下;质量m=0.01kg

解析:

金属棒通电后,闭合回路电流I=U/R=6A

导体棒受到安培力F=BIL=0.06N

根据安培定则可判断金属棒受到安培力方向竖直向下

开关闭合前2×k×0.5×10-2m=mg

开关闭合后2×k×(0.5+0.3)×10-2m=mg+F

则m=0.01kg

25.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m,如图(a)所示。

时刻开始,小物块与木板一起以共同速度向右运动,直至时木板与墙壁碰撞(碰撞时间极短)。

碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板。

已知碰撞后1s时间内小物块的图线如图(b)所示。

木板的质量是小物块质量的15倍,重力加速度大小g取10m/s2。

(1)木板与地面间的动摩擦因数及小物块与木板间的动摩擦因数;

(2)木板的最小长度;

(3)木板右端离墙壁的最终距离。

 

正确答案:

(1)μ1=0.1 μ2=0.4    

(2)6m 

(3)6.5m

解析:

(1)根据图像可以判定碰撞前木块与木板共同速度为v=4m/s

碰撞后木板速度水平向左,大小也是v=4m/s

木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有μ2g=4 

解得μ2=0.4

木板与墙壁碰撞前,匀减速运动时间t=1s,位移x=4.5m,末速度v=4m/s

其逆运动则为匀加速直线运动,带入数据可得a=1m/s2

木块和木板整体受力分析,滑动摩擦力提供合外力,即μ1g=a

可得μ1=0.1

(2)碰撞后,木板向左匀减速,依据牛顿第二定律有μ1(M+m)+μ2mg=Ma1   

可得a1=1.33m/s2

对滑块,则有加速度a2=4m/s2

滑块速度先减小到0,此时碰后时间为t1=1s

此时,木板向左的位移为x1=3.33m,末速度v1=2.67m/s

滑块向右位

移x1=2m

此后,木块开始向左加速,加速度仍为a2=4m/s2

木块继续减速,加速度仍为a1=1.33m/s2

假设又经历t2二者速度

相等,则有a2t2=v1-a1t2

解得t2=0.5s

此过程,木板位移x3=1.1m 末速度v3=2m/s

滑块位移x4=0.5m

此后木块和

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 总结汇报 > 学习总结

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1