二次函数最大利润应用题含答案.docx
《二次函数最大利润应用题含答案.docx》由会员分享,可在线阅读,更多相关《二次函数最大利润应用题含答案.docx(28页珍藏版)》请在冰豆网上搜索。
二次函数最大利润应用题含答案
二次函数最大利润应用题(含答案)
二次函数最大利润应用题
参考答案与试题解析
1.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:
元)、销售价y2(单位:
元)与产量x(单位:
kg)之间的函数关系.
(1)请解释图中点D的横坐标、纵坐标的实际意义;
(2)求线段AB所表示的y1与x之间的函数表达式;
(3)当该产品产量为多少时,获得的利润最大?
最大利润是多少?
【解答】解:
(1)点D的横坐标、纵坐标的实际意义:
当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;
(2)设线段AB所表示的y1与x之间的函数关系式为y=k1x+b1,
∵y=k1x+b1的图象过点(0,60)与(90,42),
∴
∴
,
∴这个一次函数的表达式为;y=﹣0.2x+60(0≤x≤90);
(3)设y2与x之间的函数关系式为y=k2x+b2,
∵经过点(0,120)与(130,42),
∴
,
解得:
,
∴这个一次函数的表达式为y2=﹣0.6x+120(0≤x≤130),
设产量为xkg时,获得的利润为W元,
当0≤x≤90时,W=x[(﹣0.6x+120)﹣(﹣0.2x+60)]=﹣0.4(x﹣75)2+2250,
∴当x=75时,W的值最大,最大值为2250;
当90≤x≤130时,W=x[(﹣0.6x+120)﹣42]=﹣0.6(x﹣65)2+2535,
由﹣0.6<0知,当x>65时,W随x的增大而减小,∴90≤x≤130时,W≤2160,
∴当x=90时,W=﹣0.6(90﹣65)2+2535=2160,
因此当该产品产量为75kg时,获得的利润最大,最大值为2250.
3.近期,海峡两岸关系的气氛大为改善.大陆相关部门对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售.某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:
每千克销售(元)
40
39
38
37
…
30
每天销量(千克)
60
65
70
75
…
110
设当单价从40元/千克下调了x元时,销售量为y千克;
(1)写出y与x间的函数关系式;
(2)如果凤梨的进价是20元/千克,若不考虑其他情况,那么单价从40元/千克下调多少元时,当天的销售利润W最大?
利润最大是多少?
(3)目前两岸还未直接通航,运输要绕行,需耗时一周(七天),凤梨最长的保存期为一个月(30天),若每天售价不低于32元/千克,问一次进货最多只能是多少千克?
(4)若你是该销售部负责人,那么你该怎样进货、销售,才能使销售部利润最大?
【解答】解:
(1)y=60+5x
(2)w=(40﹣x﹣20)y=﹣5(x﹣4)2+1280
∴下调4元时当天利润最大是1280元
(3)设一次进货m千克,由售价32元/千克
得x=40﹣32=8,
此时y=60+5x=100,
∴m≤100×(30﹣7)=2300,
答:
一次进货最多2300千克
(4)下调4元时当天利润最大,
由x=4,y=60+5x=80,m=80×(30﹣7)=1840千克
∴每次进货1840千克,售价36元/千克时,销售部利润最大.
4.某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).
(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;
(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;
(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?
【解答】解:
(1)当40≤x≤58时,设y与x的函数解析式为y=k1x+b1,由图象可得
,
解得
.
∴y=﹣2x+140.
当58<x≤71时,设y与x的函数解析式为y=k2x+b2,由图象得
,
解得
,
∴y=﹣x+82,
综上所述:
y=
;
(2)设人数为a,当x=48时,y=﹣2×48+140=44,
∴(48﹣40)×44=106+82a,
解得a=3;
(3)设需要b天,该店还清所有债务,则:
b[(x﹣40)•y﹣82×2﹣106]≥68400,
∴b≥
,
当40≤x≤58时,∴b≥
=
,
x=﹣
时,﹣2x2+220x﹣5870的最大值为180,
∴b
,即b≥380;
当58<x≤71时,b
=
,
当x=﹣
=61时,﹣x2+122x﹣3550的最大值为171,
∴b
,即b≥400.
综合两种情形得b≥380,即该店最早需要380天能还清所有债务,此时每件服装的价格应定为55元.
5.某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:
万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:
万元)与加工数量t(单位:
吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.
(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;
(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).
①求w关于x的函数关系式;
②若该公司获得了30万元毛利润,问:
用于直销的A类杨梅有多少吨?
(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.
【解答】解:
(1)①当2≤x<8时,如图,
设直线AB解析式为:
y=kx+b,
将A(2,12)、B(8,6)代入得:
,解得
,
∴y=﹣x+14;
②当x≥8时,y=6.
所以A类杨梅平均销售价格y与销售量x之间的函数关系式为:
y=
;
(2)设销售A类杨梅x吨,则销售B类杨梅(20﹣x)吨.
①当2≤x<8时,
wA=x(﹣x+14)﹣x=﹣x2+13x;
wB=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x
∴w=wA+wB﹣3×20
=(﹣x2+13x)+(108﹣6x)﹣60
=﹣x2+7x+48;
当x≥8时,
wA=6x﹣x=5x;
wB=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x
∴w=wA+wB﹣3×20
=(5x)+(108﹣6x)﹣60
=﹣x+48.
∴w关于x的函数关系式为:
w=
.
②当2≤x<8时,﹣x2+7x+48=30,解得x1=9,x2=﹣2,均不合题意;
当x≥8时,﹣x+48=30,解得x=18.
∴当毛利润达到30万元时,直接销售的A类杨梅有18吨.
(3)设该公司用132万元共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,
则购买费用为3m万元,A类杨梅加工成本为x万元,B类杨梅加工成本为[12+3(m﹣x)]万元,
∴3m+x+[12+3(m﹣x)]=132,化简得:
x=3m﹣60.
①当2≤x<8时,
wA=x(﹣x+14)﹣x=﹣x2+13x;
wB=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12
∴w=wA+wB﹣3×m
=(﹣x2+13x)+(6m﹣6x﹣12)﹣3m
=﹣x2+7x+3m﹣12.
将3m=x+60代入得:
w=﹣x2+8x+48=﹣(x﹣4)2+64
∴当x=4时,有最大毛利润64万元,
此时m=
,m﹣x=
;
②当x≥8时,
wA=6x﹣x=5x;
wB=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12
∴w=wA+wB﹣3×m
=(5x)+(6m﹣6x﹣12)﹣3m
=﹣x+3m﹣12.
将3m=x+60代入得:
w=48
∴当x>8时,有最大毛利润48万元.
综上所述,购买杨梅共
吨,其中A类杨梅4吨,B类
吨,公司能够获得最大毛利润,最大毛利润为64万元.
6.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:
y=﹣2x+80.设这种产品每天的销售利润为w元.
(1)求w与x之间的函数关系式.
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?
最大利润是多少元?
(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?
【解答】解:
(1)由题意得出:
w=(x﹣20)∙y
=(x﹣20)(﹣2x+80)
=﹣2x2+120x﹣1600,
故w与x的函数关系式为:
w=﹣2x2+120x﹣1600;
(2)w=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,
∵﹣2<0,
∴当x=30时,w有最大值.w最大值为200.
答:
该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.
(3)当w=150时,可得方程﹣2(x﹣30)2+200=150.
解得x1=25,x2=35.
∵35>28,
∴x2=35不符合题意,应舍去.
答:
该农户想要每天获得150元的销售利润,销售价应定为每千克25元.
7.某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格x(元/个)的变化如下表:
价格x(元/个)
…
30
40
50
60
…
销售量y(万个)
…
5
4
3
2
…
同时,销售过程中的其他开支(不含进价)总计40万元.
(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.
(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?
(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?
【解答】解:
(1)根据表格中数据可得出:
y与x是一次函数关系,
设解析式为:
y=ax+b,
则
,
解得:
,
故函数解析式为:
y=﹣
x+8;
(2)根据题意得出:
z=(x﹣20)y﹣40
=(x﹣20)(﹣
x+8)﹣40
=﹣
x2+10x﹣200,
=﹣
(x2﹣100x)﹣200
=﹣
[(x﹣50)2﹣2500]﹣200
=﹣
(x﹣50)2+50,
故销售价格定为50元/个时净得利润最大,最大值是50万元.
(3)当公司要求净得利润为40万元时,即﹣
(x﹣50)2+50=40,解得:
x1=40,x2=60.
如上图,通过观察函数y=﹣
(x﹣50)2+50的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:
40≤x≤60.
而y与x的函数关系式为:
y=﹣
x+8,y随x的增大而减少,
因此,若还需考虑销售量尽可能大,销售价格应定为40元/个.
8.某大学生利用暑假40天社会实践参与了一家网店的经营,了解到一种成本为20元/件的新型商品在x天销售的相关信息如表所示.
销售量p(件)
p=50﹣x
销售单价q(元/件)
当1≤x≤20时,q=30+
x
当21≤x≤40时,q=20+
(1)请计算第几天该商品的销售单价为35元/件?
(2)求该网店第x天获得的利润y关于x的函数关系式;
(3)这40天中该网店第几天获得的利润最大?
最大的利润是多少?
【解答】解:
(1)当1≤x≤20时,令30+
x=35,得x=10,
当21≤x≤40时,令20+
=35,得x=35,经检验得x=35是原方程的解且符合题意
即第10天或者第35天该商品的销售单价为35元/件.
(2)当1≤x≤20时,y=(30+
x﹣20)(50﹣x)=﹣
x2+15x+500,
当21≤x≤40时,y=(20+
﹣20)(50﹣x)=
﹣525,
即y=
,
(3)当1≤x≤20时,y=﹣
x2+15x+500=﹣
(x﹣15)2+612.5,
∵﹣
<0,
∴当x=15时,y有最大值y1,且y1=612.5,
当21≤x≤40时,∵26250>0,
∴
随x的增大而减小,
当x=21时,
最大,
于是,x=21时,y=
﹣525有最大值y2,且y2=
﹣525=725,
∵y1<y2,
∴这40天中第21天时该网店获得利润最大,最大利润为725元.
9.某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完.该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售量x(千件)的关系为:
y1=
若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系为
(1)用x的代数式表示t为:
t= 6﹣x ;当0<x≤4时,y2与x的函数关系为:
y2= 5x+80 ;当 4 ≤x< 6 时,y2=100;
(2)求每年该公司销售这种健身产品的总利润w(千元)与国内销售数量x(千件)的函数关系式,并指出x的取值范围;
(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?
最大值为多少?
【解答】解:
(1)由题意,得x+t=6,
∴t=6﹣x;
∵
,
∴当0<x≤4时,2≤6﹣x<6,即2≤t<6,
此时y2与x的函数关系为:
y2=﹣5(6﹣x)+110=5x+80;
当4≤x<6时,0<6﹣x≤2,即0<t≤2,
此时y2=100.
故答案为:
6﹣x;5x+80;4,6;
(2)分三种情况:
①当0<x≤2时,w=(15x+90)x+(5x+80)(6﹣x)=10x2+40x+480;
②当2<x≤4时,w=(﹣5x+130)x+(5x+80)(6﹣x)=﹣10x2+80x+480;
③当4<x≤6时,w=(﹣5x+130)x+100(6﹣x)=﹣5x2+30x+600;
综上可知,w=
;
(3)当0<x≤2时,w=10x2+40x+480=10(x+2)2+440,此时x=2时,w最大=600;
当2<x≤4时,w=﹣10x2+80x+480=﹣10(x﹣4)2+640,此时x=4时,w最大=640;
当4<x≤6时,w=﹣5x2+30x+600=﹣5(x﹣3)2+645,4<x<6时,w<640;
∵a=﹣5,
∴当x>3时,w随x的增大而减小,
∴没有w最大.
故该公司每年国内、国外的销售量各为4千件、2千件,可使公司每年的总利润最大,最大值为640千元.
10.某公司投资700万元购甲、乙两种产品的生产技术和设备后,进行这两种产品加工.已知生产甲种产品每件还需成本费30元,生产乙种产品每件还需成本费20元.经市场调研发现:
甲种产品的销售单价为x(元),年销售量为y(万件),当35≤x<50时,y与x之间的函数关系式为y=20﹣0.2x;当50≤x≤70时,y与x的函数关系式如图所示,乙种产品的销售单价,在25元(含)到45元(含)之间,且年销售量稳定在10万件.物价部门规定这两种产品的销售单价之和为90元.
(1)当50≤x≤70时,求出甲种产品的年销售量y(万元)与x(元)之间的函数关系式.
(2)若公司第一年的年销售量利润(年销售利润=年销售收入﹣生产成本)为W(万元),那么怎样定价,可使第一年的年销售利润最大?
最大年销售利润是多少?
(3)第二年公司可重新对产品进行定价,在
(2)的条件下,并要求甲种产品的销售单价x(元)在50≤x≤70范围内,该公司希望到第二年年底,两年的总盈利(总盈利=两年的年销售利润之和﹣投资成本)不低于85万元.请直接写出第二年乙种产品的销售单价m(元)的范围.
【解答】解:
(1)设y与x的函数关系式为y=kx+b(k≠0),
∵函数图象经过点(50,10),(70,8),
∴
,
解得
,
所以,y=﹣0.1x+15;
(2)∵乙种产品的销售单价在25元(含)到45元(含)之间,
∴
,
解之得45≤x≤65,
①45≤x<50时,W=(x﹣30)(20﹣0.2x)+10(90﹣x﹣20),
=﹣0.2x2+16x+100,
=﹣0.2(x2﹣80x+1600)+320+100,
=﹣0.2(x﹣40)2+420,
∵﹣0.2<0,
∴x>40时,W随x的增大而减小,
∴当x=45时,W有最大值,W最大=﹣0.2(45﹣40)2+420=415万元;
②50≤x≤65时,W=(x﹣30)(﹣0.1x+15)+10(90﹣x﹣20),
=﹣0.1x2+8x+250,
=﹣0.1(x2﹣80x+1600)+160+250,
=﹣0.1(x﹣40)2+410,
∵﹣0.1<0,
∴x>40时,W随x的增大而减小,
∴当x=50时,W有最大值,W最大=﹣0.1(50﹣40)2+410=400万元.
综上所述,当x=45,即甲、乙两种产品定价均为45元时,第一年的年销售利润最大,最大年销售利润是415万元;
(3)根据题意得,W=﹣0.1x2+8x+250+415﹣700=﹣0.1x2+8x﹣35,
令W=85,则﹣0.1x2+8x﹣35=85,解得x1=20,x2=60.
又由题意知,50≤x≤65,根据函数与x轴的交点可知50≤x≤60,
即50≤90﹣m≤60,
∴30≤m≤40.
11.某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)
(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;
(2)当销售单价为多少元时,厂商每月能获得350万元的利润?
当销售单价为多少元时,厂商每月能获得最大利润?
最大利润是多少?
(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?
【解答】解:
(1)z=(x﹣18)y=(x﹣18)(﹣2x+100)
=﹣2x2+136x﹣1800,
∴z与x之间的函数解析式为z=﹣2x2+136x﹣1800(x>18);
(2)由z=350,得350=﹣2x2+136x﹣1800,
解这个方程得x1=25,x2=43
所以,销售单价定为25元或43元,
将z=﹣2x2+136x﹣1800配方,得z=﹣2(x﹣34)2+512(x>18),
答;当销售单价为34元时,每月能获得最大利润,最大利润是512万元;
(3)结合
(2)及函数z=﹣2x2+136x﹣1800的图象(如图所示)可知,
当25≤x≤43时z≥350,
又由限价32元,得25≤x≤32,
根据一次函数的性质,得y=﹣2x+100中y随x的增大而减小,
∵x最大取32,
∴当x=32时,每月制造成本最低.最低成本是18×(﹣2×32+100)=648(万元),
答:
每月最低制造成本为648万元.
12.某科技开发公司研制出一种新型的产品,每件产品的成本为2400元,销售单价定为3000元,在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元.
(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?
(2)设商家一次购买这种产品x件,开发公司所获得的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围.
(3)该公司的销售人员发现:
当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获得的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获得的利润越大,公司应将最低销售单价调整为多少元?
(其它销售条件不变)
【解答】解:
(1)设件数为x,依题意,得3000﹣10(x﹣10)=2600,解得x=50,
答:
商家一次购买这种产品50件时,销售单价恰好为2600元;
(2)当0≤x≤10时,y=(3000﹣2400)x=600x,
当10<x≤50时,y=[3000﹣10(x﹣10)﹣2400]x,即y=﹣10x2+700x
当x>50时,y=(2600﹣2400)x=200x
∴y=
(3)由y=﹣10x2+700x可知抛物线开口向下,当x=﹣
=35时,利润y有最大值,
此时,销售单价为3000﹣10(x﹣10)=2750元,
答:
公司应将最低销售单价调整为2750元.
13.某商家经销一种绿茶,用于装修门面已投资3000元,已知绿茶每千克成本50元,在第一个月的试销时间内发现,销量w(kg)随销售单价x(元/kg)的变化而变化,具体变化规律如下表所示
销售单价x(元/kg)
…
70
75
80
85
90
…
销售量w(kg)
…
100
90
80
70
60
…
设该绿茶的月销售利润为y(元)(销售利润=单价×销售量﹣成本﹣投资).
(1)请根据上表,写出w与x之间的函数关系式(不必写出自变量x的取值范围);
(2)求y与x之间的函数关系式(不必写出自变量x的取值范围).并求出x为何值时,y的值最大?
(3)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700元,那么第二个月里应该确定销售单价为多少元?
【解答】解:
(1)设w=kx+b,
将(70,100),(75,90)代入上式得:
,
解得:
,
则w=﹣2x+240;
(2)y=(x﹣50)•w=(x﹣50)•(﹣2x+240)=﹣2x2+340x﹣9000,
因此y与x的关系式为:
y=﹣2x2+340x﹣9000,
=﹣2(x﹣85)2+2450,
故当x=85时,y的值最大为2450.
(3)故第1个月还有3000﹣2450=550元的投资成本没有收回,
则要想在全部收回投资的基础上使第二个月的利润达到1700元,即y=2250才可以,
可得方程﹣2(x﹣85)2+2450=2250,
解这个方程,得x1=75,x2=95;
根据题意,x2=95不合题意应舍去.
答:
当销售单价为每千克75元时,可获得销售利润2250元,即在全部收回投资的基础上使第二个月的利润达到1700元.
14.某大众汽车经销商在销售某款汽车时,以高出进价20%标价.已知按