JointMAPregistrationandhighresolutionimageestimationusingasequenceofundersample.docx
《JointMAPregistrationandhighresolutionimageestimationusingasequenceofundersample.docx》由会员分享,可在线阅读,更多相关《JointMAPregistrationandhighresolutionimageestimationusingasequenceofundersample.docx(81页珍藏版)》请在冰豆网上搜索。
JointMAPregistrationandhighresolutionimageestimationusingasequenceofundersample
JointMAPRegistrationandHighResolutionImage
EstimationUsingaSequenceof
UndersampledImages1
RussellC.Hardie†,KennethJ.Barnard‡andErnestE.Armstrong‡
†DepartmentofElectricalandComputerEngineering
UniversityofDayton
300CollegeParkAvenue
Dayton,OH45469
Phone:
(513)229-3178
Fax:
(513)229-2471
Email:
rhardie@engr.udayton.edu
‡SensorsTechnologyBranch
WrightLaboratoryWL/AAJT
Building622
3109PStreet
WPAFBOH45433-7700
Phone:
(513)255-9609
Fax:
(513)255-6489
Abstract
Inmanyimagingsystems,thedetectorarrayisnotsufficientlydensetoadequatelysample
thescenewiththedesiredfieldofview.Thisisparticularlytrueformanyinfraredfocalplane
arrays.Thus,theresultingimagesmaybeseverelyaliased.Thispaperexaminesatechnique
forestimatingahighresolutionimage,withreducedaliasing,fromasequenceofundersampled
frames.Severalapproachestothisproblemhavebeeninvestigatedpreviously.However,in
thispaperamaximumaposteriori(MAP)frameworkforjointlyestimatingimageregistration
parametersandthehighresolutionimageispresented.Severalpreviousapproacheshaverelied
onknowingtheregistrationparametersaprioriorhaveutilizedregistrationtechniquesnot
specificallydesignedtotreatseverelyaliasedimages.Intheproposedmethod,theregistration
parametersareiterativelyupdatedalongwiththehighresolutionimageinacycliccoordinate-
descentoptimizationprocedure.Experimentalresultsareprovidedtoillustratetheperformance
oftheproposedMAPalgorithmusingbothvisibleandinfraredimages.Quantitativeerror
analysisisprovidedandseveralimagesareshownforsubjectiveevaluation.
EDICSNumber:
IP1.12(ImageSequenceProcessing)
Permissiontopublishthisabstractseparatelyisgranted.
SubmittedtotheIEEETransactionsonImageProcessing,Feb.1996.Revisedmanuscript
submittedDec.1996.
1
ThisworkhasbeensupportedinpartunderAirForcecontractF33601-95-DJ010.
ListofFigures
1
Discretedetectormodelshowingthosehighresolutionpixels(ontheleft)thatcon-
tributetoalowresolutionpixel(ontheright).Theimagezrepresentsthetrue
underlinghighresolutionimagewewishtoestimateandykisthek’thobservedlow
resolutionframe.Notethedifferentgridsizesforzandyk...............
5
2
Thehighresolutionimagepriorneighborhoodmodelshowingthecardinalneighbors
ofapixelzi.Inthiscase,di,jwouldbenon-zeroonlyforjsuchthatzjisanimmediate
spatialneighborofzi(thoseshadedpixels)........................
8
3
Convolutionkernelusedtoobtaintheimagepriorgradient.
.............
12
4
5
6
Simulatedcamerashiftsintermsofhighresolutionpixelsfor16frames........
(a)Originalimage“Aerial”(b)simulatedlowresolutionframe1(L1=L2=4,
ση2=100)(c)MAPestimatewithλ=150(d)MAPestimatewithλ=∞(e)
bilinearinterpolationofframe1(f)bicubicinterpolationofframe1..........
LearningcurveshowingtheMAPcostfunction,L(z,s),versusiterationnumberfor
14
15
thesimulateddata.Here16framesareusedwithL1=L2=4,ση2=100,andλ=150.18
7
Meanabsoluteerrorfortheestimatorswith(a)varyinglevelsofnoiseusing16frames
and(b)differentnumberofframeswithnoisevarianceση2=100............
19
8
TheoreticalimagingsystemPSFonthehighresolutiongridwhereL1=L2=5.The
PSFisbasedontheassumptionofdiffraction-limitedopticsandincludestheeffects
ofthefinitedetectorsize..................................
21
9
(a)Lowresolutionframe1showingvehiclesimagedfromatower(b)MAPestimate
using16frameswithL1=L2=5andλ=200(c)MAPestimatewithλ=∞(d)
bilinearinterpolationofframe1(e)bicubicinterpolationofframe1..........
22
10
LearningcurveshowingtheMAPcostfunctionfortheinfrareddataasafunctionof
iterationnumberwhereL1=L2=5andλ=200....................
25
11
Estimatedinfraredimagershiftsintermsofhighresolutionpixelsfor16frames...
26
ListofTables
1
ProposedIterativeMAPEstimationAlgorithm......................
i
13
1
Introduction
Ifadetectorarrayusedforimageacquisitionisnotsufficientlydense,soastomeettheNyquist
criterion,theresultingimageswillbedegradedbyaliasingeffects.Sincetheopticsoftheimaging
systemwillservetoeffectivelybandlimittheimageonthedetectorarray,itispossibletoacquire
animagewhichisfreeofaliasing.However,thisrequirestheappropriatecombinationofopticsand
detectorarray.Generallyabroadinstantaneousfieldofviewisdesiredwhichrequiresopticswith
ashortfocallength.Topreventaliasinginthiscaserequiresadensedetectorarraywhichmaybe
verycostlyorsimplyunavailable.Thus,manyimagingsystemsaredesignedtoallowsomelevel
ofaliasingduringimageacquisition.Thisisparticularlytrueforstaringinfraredimagersbecause
offabricationcomplexities.Somevisualchargecoupleddevice(CCD)camerasalsosufferfrom
undersampling.Thegoalofthisworkistodevelopatechniqueforestimatinganunaliasedhigh
resolutionimagefromthealiasedimagesacquiredfromsuchanimagingsystem.Wealsowishto
combatadditivenoiseandblurringduetothefinitedetectorsizeandoptics.
Heretheproblemisapproachedfromtheframeworkofimagesequenceprocessing[1].Thus,the
highresolutionimagewillbeestimatedfromasequenceoflow-resolutionaliasedimages.Thisis
possibleifthereexistssub-pixelmotionbetweentheacquiredframes.Thus,aunique“look”atthe
sceneisprovidedbyeachframe.Inparticular,weconsiderthescenariowhereanimagerismounted
onamovingorvibratingplatform,suchasanaircraft,andisimagingobjectsinthefarfield.Thus,
theline-of-sightjitterwillgenerallyprovidethenecessarymotionbetweenthefocalplanearray
andthesceneateachacquisitiontimewithminimalocclusioneffects.Thisprocessisreferredtoas
uncontrolledmicroscanning[2,3].Thekeytoexploitingthesemultipleframesisaccurateknowledge
ofthesub-pixelregistrationparametersforeachframe.Iftheimagesareseverelyundersampled,we
havefoundthattraditionalmotionestimationtechniques,suchasblockmatching,maynotprovide
thedesiredsub-pixelaccuracy.Thishasmotivatedthedevelopmentoftheapproachpresentedhere.
Thisbasicproblemofhighresolutionimagerecoveryusingmultipleframeswasfirstaddressed
intheliteraturebyTsaiandHuang[4].Theirobservationmodelisbasedontheshiftproperty
oftheFouriertransform.Eachaliasedobservationprovidesasetofequationsinthefrequency
domain.Providedthatenoughframesareavailable,theunaliaseddiscretespectrum,andhence
unaliasedimage,canbesolvedfor.However,onemustknowtheshiftsinordertosolveforthehigh
resolutionimageinthisfashion.Amethodforestimatingtheshiftsusingthemultiplealiasedframes
isproposedin[4]forthecasewheretheimagesarebandlimited.Whilethisisaninsightfulsolution,
itmaybeimpracticalinmanyapplicationsbecauseofprohibitivelyhighcomputationalcomplexity.
Furthermore,itrequiresasetminimumnumberofframestooperate,whichmaynotbeavailable.
Theimagerecoveryalgorithmin[4]isextendedin[5]forthecasewherenoiseisconsideredbyusing
1
arecursiveleastsquaressolutionforthesetoffrequencydomainlinearequations.Thisisextended
againforthecasewhereblurringinconsideredin[6].However,theestimationoftheglobalframe
shiftsisnotaddressedin[5]or[6].Atechniquewhichusestheleastsquaressolution,similarto
thatin[5],alongwithafastsuboptimalschemeforestimatingtheglobalframeshiftsisdescribed
in[7].
Anotherapproachtothehighresolutionimagereconstructionproblemusesaprojectiononto
convexsets(POCS)algorithm[8].ThePOCSapproachhasbeenextendedtotreatmotionblur
andnoisein[1,9,10].Blockmatchingorphasecorrelationissuggestedin[9,10]asameansof
estimatingtherequiredmotionparameters.Arelatedmultiframetechniquewhichconsidersglobal
translationalshiftandrotationispresentedin[11].In[12],thistechniqueisextendedtotreatthe
moregeneralcaseofaperspectiveprojectionofaplane.Allofthesemethodsrelyonatwostage
estimationprocedurewherebytheregistrationisdoneindependentlyofthehighresolutionimage
reconstruction.
Theproblemhasalsobeenapproachedfromastatisticalestimationframework.Specifically,a
maximumaposteriori(MAP)estimatorisdevelopedin[13,14]whichisanextensionofasingle
frameimageexpansionalgorithmproposedin[15].TheMAPestimatorin[13,14]usesanedge
preservingHuber-Markovrandomfieldfortheimageprior.Themotionisestimatedbyablock
matchingalgorithmappliedtotheindividualframes.Theseindividualframesarefirstexpanded
usingthesingleframealgorithmin[15]toallowforsub-pixelestimates.Thisprovidesauseful
solutionanditcantreatthecasewheretheimagemotionisnotglobal,whichiscriticalifthe
scenecontainsmovingobjects.Theblockmatchingtechnique,however,doesnotexploitapriori
informationaboutthemotionifanyisavailable.Italsodoesnotexploitalltheobservedframes
whenestimatingthemotionparametersforeachimage.AnotherrelatedmultiframeMAPtechnique,
whichusesanapproachsimilartothatdescribedhe