人教版初一数学上册知识点.docx

上传人:b****5 文档编号:7996755 上传时间:2023-01-27 格式:DOCX 页数:27 大小:278.50KB
下载 相关 举报
人教版初一数学上册知识点.docx_第1页
第1页 / 共27页
人教版初一数学上册知识点.docx_第2页
第2页 / 共27页
人教版初一数学上册知识点.docx_第3页
第3页 / 共27页
人教版初一数学上册知识点.docx_第4页
第4页 / 共27页
人教版初一数学上册知识点.docx_第5页
第5页 / 共27页
点击查看更多>>
下载资源
资源描述

人教版初一数学上册知识点.docx

《人教版初一数学上册知识点.docx》由会员分享,可在线阅读,更多相关《人教版初一数学上册知识点.docx(27页珍藏版)》请在冰豆网上搜索。

人教版初一数学上册知识点.docx

人教版初一数学上册知识点

初一上册数学知识点

第一章 有理数

知识点一:

有理数的分类

有理数

含正有限小数和无限循环小数

 

含负有限小数和无限循环小数

 

 

 

有理数的另一种分类

 

 

自然数

想一想:

零是整数吗?

自然数一定是整数吗?

自然数一定是正整数吗?

整数一定是自然数吗?

零是整数;自然数一定是整数;自然数不一定是正整数,因为零也是自然数;整数不一定是自然数,因为负整数不是自然数。

判断正误:

①不带“-”号的数都是正数()

②如果a是正数,那么-a一定是负数()

③不存在既不是正数,也不是负数的数()

④0℃表示没有温度()

知识点二:

数轴

1、填空

①规定了唯一的原点,正方向和单位长度(三要素)的直线叫做数轴。

②比-3大的负整数是_______;已知m是整数且-4

③有理数中,最大的负整数是____,最小的正整数是____。

最大的非正数是____。

 

④与原点的距离为三个单位的点有____个,他们分别表示的有理数是________。

2、请画一个数轴,并检查它是否具备数轴三要素?

 

3、选择题

在数轴上,原点及原点左边所表示的数是( )

A整数 B负数 C非负数 D非正数

下列语句中正确的是( )

A数轴上的点只能表示整数 B数轴上的点只能表示分数 

C数轴上的点只能表示有理数 D所有有理数都可以用数轴上的点表示出来

知识点三:

相反数

相反数:

只有符号不同的两个数互为相反数,0的相反数是0。

在数轴上位于原点两侧且离原点距离相等。

1、填空

①-2的相反数是;它的倒数是;它的绝对值是。

②|-3|的相反数是;它的倒数是;它的绝对值是。

③相反数是它本身的数是0;倒数是它本身的数是1和-1;绝对值是它本身的数是非负数。

2、选择

①若a和b是互为相反数,则a+b=()

A、–2aB、2bC、0D、任意有理数

②下列说法正确的是()

A、–1/4的相反数是0.25B、4的相反数是-0.25

C、0.25的倒数是-0.25D、0.25的相反数的倒数是-0.25

③用-a表示的数一定是()

A、负数B、正数C、正数或负数D、都不对

④一个数的相反数是最小的正整数,那么这个数是()

A、–1B、1C、±1D、0

3、判断

①互为相反的两个数在数轴上位于原点两旁()

②在一个数前面添上“-”号,它就成了一个负数()

③只要符号不同,这两个数就是相反数()

4、计算:

已知和的值互为相反数,求x的值。

 

知识点四:

绝对值

1、绝对值的几何意义:

一个数所对应的点离原点的距离叫做该数的绝对值。

2、绝对值的代数定义:

(1)一个正数的绝对值是它本身;

(2)一个负数数的绝对值是它的相反数;(3)0的绝对值是0;(4)|a|大于或者等于0。

3、比较两个数的大小关系

数学中规定:

在数轴上表示有理数,它们从左到右的顺序,就是从大到小的顺序,即左边的数小于右边的数。

由此可知:

(1)正数大于0,0大于负数,正数大于负数;

(2)两个负数,绝对值大的反而小。

1、化简

(1)-|-2/3|=_____;

(2)|-3.3|-|+4.3|=___;

(3)1-|-1/2|=___;

(4)-1-|1-1/2|=______。

3、填空题。

①若|a|=3,则a=____;|a+1|=0,则a=____。

②若|a-5|+|b+3|=0,则a=___,b=___。

③若|x+2|+|y-2|=0,则x=___,y=___。

④绝对值小于2的整数有________。

⑤绝对值等于它本身的数有___________。

⑥绝对值不大于3的负整数有__________。

⑦数a和b的绝对值分别为2和5,且在数轴上表示a的点在表示b的点左侧,则b的值为。

⑧将2.5,0,-1,1/2,-3,-1/3,2,1/3,1这组数按从大到小的顺序排列,并用“>”号连接。

知识点五:

有理数加减法

1、有理数的加、减法法则

①同号两数相加,取相同的符号,并把绝对值相加。

绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

②互为相反数的两个数相加得0。

③一个数同0相加,仍得这个数。

④减去一个数,等于加上这个数的相反数。

2、计算

 

 

知识点六:

乘除法法则

①两数相乘,同号得正,异号得负,并把绝对值相乘。

0乘以任何数,都得0。

②几个不为0的数相乘,积的符号由负因数的个数确定,负因数的个数为偶数时,积为正;负因数的个数为奇数时,积为负。

③两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。

④有理数中仍然有:

乘积是1的两个数互为倒数。

⑤除以一个不等于0的数等于乘以这个数的倒数。

知识点七:

乘方

乘方定义:

求n个相同因数的积的运算,叫做乘方。

中,底数是

,指数是

,幂是乘方的结果;读作:

的n次方或

的n次幂。

负数的奇次幂是负数,负数的偶次幂是正数。

正数的任何次幂都是正数,0的任何正整数次幂都是0。

1、填空

① 23中,底数是;指数是;结果是;读作:

② (-2)2中,底数是;结果是。

③ 5中,底数是;指数是。

④ 

中,底数是;指数是;幂是。

⑤ 18表示个相乘,结果是。

2、计算:

32=;-23=;-14=;

(-3)2=;05=;0.13=.

知识点八:

运算律及混合运算

1、基本知识

v

加法交换律:

v

乘法交换律:

v

加法结合律:

v

乘法结合律:

v

乘法分配律:

v有理数混合运算顺序:

先乘方;再乘除;最后算加减。

有括号,先算括号内的运算,按小括号、中括号、大括号依次进行。

同级运算,从左到右进行。

2、计算

 

知识点九:

科学记数法近似数

把一个大于10的数表示成

的形式(其中

是整数数位只有一位的数,即1≤|a|<10,

是正整数),使用的是科学记数法。

如:

知识点十:

近似数

1、近似数:

在一定程度上反映被考察量的大小,能说明实际问题的意义,与准确数非常地接近,像这样的数我们称它为近似数。

2、近似数的分类:

(1)具体近似数(如30.2、58.0…)

(2)带单位近似数(如2.4万…)

(3)科学记数法(如

…)

3、精确度:

用位数较少的近似数替代位数较多或位数无限的数,有一个近似程度的问题,这个近似程度就是精确度。

四舍五入到哪一位,就说精确到哪一位(看精确度得到原数中去看在哪一位上,如:

2.4万精确到千位,而非十分位,因为2.4万就是24000,4在千位上)。

4、有效数字:

对于一个不为0的近似数,从左边第一个不为0的数字起,到末尾数止,所有数字都是这个近似数的有效数字。

求近似数要求保留n个有效数字时,第n+1个有效数字作四舍五入处理。

例:

0.0109有三个有效数字1、0、9,要求保留2个有效数字时,0.0109的第三个有效数字9四舍五入,变为0.0110,保留两个有效数字1、1后求出近似数0.0109≈0.011。

5、计算

按括号内的要求,用四舍五入法对下列各数取近似数:

(1)0.1296(精确到0.1/0.01/0.001)

(2)220.45(精确到个位/0.1)

(3)0.0099999(保留3个有效数字)

 

第二章整式的加减

知识点一:

整式的相关概念

代数式中的一种有理式:

不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。

(分母中含有字母有除法运算的,那么式子叫做分式)

1.单项式:

数或字母的积(如5n,

等),单个的数或字母也是单项式。

(1)单项式的系数:

单项式中的数字因数及性质符号叫做单项式的系数。

(如果一个单项式,只含有数字因数,系数是它本身,次数是0)。

(2)单项式的次数:

一个单项式中,所有字母的指数的和叫做这个单项式的次数(非零常数的次数为0)。

2.多项式

(1)概念:

几个单项式的和叫做多项式。

在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。

一个多项式有几项就叫做几项式。

(2)多项式的次数:

多项式中,次数最高的项的次数,就是这个多项式的次数。

(3)多项式的排列:

把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列;把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

在做多项式的排列的题时注意:

(1)由于单项式的项包括它前面的性质符号,因此在排列时,仍需把每一项的性质符

看作是这一项的一部分,一起移动。

(2)有两个或两个以上字母的多项式,排列时,要注意:

a.先确认按照哪个字母的指数来排列。

b.确定按这个字母降幂排列,还是升幂排列。

3、整式:

单项式和多项式统称为整式。

4、列代数式的几个注意事项:

(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;

(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;

(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;

(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×

应写成

a;

(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成

的形式;

(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.

知识点二:

整式的加减运算

1.同类项的概念:

所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也是同类项。

(同类项与系数无关,与字母排列的顺序也无关)。

2.合并同类项:

把多项式中的同类项合并成一项叫做合并同类项。

法则:

同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

不能合并的项单独作为一项,不可遗漏

3.整式加减实质就是去括号,合并同类项。

注:

去括号时,如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

4、几个重要的代数式:

(m、n表示整数)

(1)a与b的平方差是:

a2-b2;a与b差的平方是:

(a-b)2;

(2)若a、b、c是正整数,则两位整数是:

10a+b,则三位整数是:

100a+10b+c;

(3)若m、n是整数,则被5除商m余n的数是:

5m+n;偶数是:

2n,奇数是:

2n+1;三个连续整数是:

n-1、n、n+1;

(4)若b>0,则正数是:

a2+b,负数是:

-a2-b,非负数是:

a2,非正数是:

-a2.

 

补充例题如下:

第三章一元一次方程

知识点一:

方程的相关概念

等式:

表示相等关系的式子。

方程:

含有未知数的等式。

(方程一定是等式,但等式不一定是方程)。

方程的解:

使方程左右两边的值相等的未知数的值叫做方程的解。

解方程:

求出使方程左右两边都相等的未知数的值的过程叫做解方程。

一元一次方程:

只含一个未知数,未知数的次数是1,并且等式两边都是整式的方程。

同解方程:

两方程的解相同。

知识点二:

等式的性质

等式的性质1:

等式两边加(或减)同一个数(或式子),结果仍相等。

即:

如果

,那么

等式的性质2:

等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

即:

如果

,那么

;如果

,那么

知识点三:

解一元一次方程

一般解法:

ⅰ去分母:

两边同乘以各分母的最小公倍数;

ⅱ去括号;

ⅲ移项:

移项要变号;

ⅳ合并同类项:

把方程化成ax=b(a≠0)的形式;

ⅴ系数化为1:

两边同除以未知数的系数,得到方程的解x=b/a。

一元一次方程的应用(重点难点):

列方程解应用题的关键是:

仔细审题,找出能正确表达题目整体数量关系的一个相等关系,再设未知数,并将这个相等关系用含未知数的式子表示出来。

几种常见问题:

1.和差倍分问题:

这类问题主要是正确理解是几倍“增加了几倍”“增加到几倍”“多少”“大小”“不足“剩余”等关键词语的意义。

2.行程相遇问题:

三个基本量的关系路程=速度×时间

(1)两人在圆形跑道上同时同地背向而行求首次相遇时间:

甲的路程+乙的路程=一圈的长度(直线路上两人面对面行走首次相遇的时间求法与之相同);

(2)两人在圆形跑道上同时同地同向而行求首次相遇时间:

快人的路程-慢人的路程=一圈的长度。

3.工程任务问题:

三个基本量的关系:

工作量=工作效率×工作时间

一般情况下,把全部工作量看做1(即100%),工作效率=1/工作时间(各个量一定要对应,自己的效率乘以自己的时间等于自己的工作量)。

合作效率=各个人的效率之和。

4.利润问题:

利润=售价-成本=成本×利润率;利润率=利润÷成本;实际售价=标价×折扣率。

5.分配问题:

例:

某车间有22名工人加工生产一种螺栓和螺母,每人每天平均生产螺栓120个或螺母200个,一个螺栓要配两个螺母(建立等量关系的依据),应该分配多少名工人生产螺栓,多少名工人生产螺母,才能使每天生产的产品刚好配套?

6.水上航行问题:

顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度。

应用举例:

1.一本书,小明第一天读了十分之一,第二天读了10页,已读的是未读的1/4,请问这本书一共有多少页?

等量关系:

已读的+未读的=总页数(或已读的=总页数-未读的,未读的=总页数-已读的)。

2.某服装七月份下降了10%,八月份上升了10%,则八月份价格与原价比()

A.不变B.增加1%C.减少9%D.减少1%

注意:

不要误以为不变,百分数的基数不一样会变化,7月份是在原价基础上下降10%,8月份是在7月份基础上上升10%而不再是在原价基础上上升。

3.甲乙两人在400米的圆形跑道上跑步,甲每秒跑9米,乙每秒跑7米,

(1)当两人同时同地背向而行时,经过多少秒后两人首次相遇?

(2)当两人同时同地同向而行时,经过多少秒后两人首次相遇?

分析

(1):

设经过x秒首次相遇。

两人加起来跑完一圈即400米时首次相遇,所以等量关系式是:

甲的路程+乙的路程=一圈的长度400米甲的路程=甲的速度×时间x乙的路程=乙的速度×时间x得到方程:

9x+7x=400

(2)设经过x秒首次相遇。

同向首次相遇,即快的人多跑一圈与慢的人相遇,所以等量关系式是:

快人的路程-慢人的路程=一圈的长度400米,在这即是甲的路程-乙的路程=400。

4.一项任务,甲独做需x天,乙独做需y天,若两人合作需________天

分析:

合作时间=工作量/合作效率工作量=1合作效率=甲的效率+乙的效率

甲的效率=工作量/甲的时间=1/x乙的效率=工作量/乙的时间=1/y

∴合作时间=1/(1/x+1/y)

5.某种商品每件的进价为250元,按标价的9折销售时,利润率为15.2%,这种商品每件标价多少元?

分析:

设标价x元,等量关系:

利润(求)÷成本(已知250元)=利润率(已知15.2%)

利润=实际售价(标价的9折即90%x)-成本250

∴(90%x-250)/250=15.2%

练习:

小明、小红买工具,所带钱之比为7:

6,小明用掉50元,小红用掉60元,两人余下钱之比为3:

2,,求他们分别余下多少钱?

 

第四章图形认识初步

知识点一:

几何图形

1、我们把从实物中抽象出的各种图形统称为几何图形。

2、有些几何图形的各部分不都在同一平面内,它们是立体图形。

如长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等。

3、有些几何图形的各部分都在同一平面内,它们是平面图形。

如线段、角、三角形、长方形、圆等。

4、立体图形与平面图形虽然是两类不同的几何图形,但是立体图形中某些部分是平面图形,对于一些立体图形的问题,常把它们转化为平面图形来研究和处理。

有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形成为相应立体图形的展开图。

知识点二:

点、线、面、体

1、立体图形是几何体,简称体;包围着体的是面,面有平面和曲面;面和面相交的地方形成线,线有直线和曲线;线和线相交的地方是点。

2、几何图形都是由点、线、面、体组成,点是构成图形的基本元素。

知识点三:

直线、射线、线段

1、线段:

直线上两个点和它们之间的部分叫线段,这两个点叫线段的端点。

射线:

将线段向一个方向无限延长就形成了射线。

直线:

将线段向两个方向无限延长就形成了直线。

2、点与直线的位置关系:

点p在直线a上(或说直线a经过点p);

点p不在直线a上(或说直线a不经过点p)。

过一点可画无数条直线,过两点有且仅有一条直线。

简述为:

两点确定一条直线。

3、线段的中点:

把一线段分成两相等线段的点。

两点的所有连线中,线段最短,简述为:

两点之间,线段最短。

两点间的距离:

连接两点间的线段的长度。

线段的长短比较:

⑴度量法;⑵叠合法

判断:

①两点间的距离是指两点间的线段。

()

②两点间连线的长度叫这两点间的距离。

()

知识点四:

角:

由两条具有公共端点引出射线组成的图形(也可看做是由一射线绕端点旋转而成)。

角的表示:

三个大写字母;一个大写字母(不混淆情况下方可使用);一个数字;一个希腊字母。

角的要素:

顶点和边,角的大小与边的长短无关。

角的单位:

度,分,秒①1°的60分之一为1分,记作1′,即1°=60′

②1′的60分之一为1秒,记作1″,即1′=60″

角的大小比较:

⑴度量法;⑵叠合法。

角平分线:

从一个角的顶点引出一条射线,把这个角分成两个等角,这条射线叫角平分线。

余角和补角:

如果两个角的和等于90°(直角),就说这两个角互为余角;如果两个角的和等于180°(平角),就说这两个角互为补角。

性质:

等角的补角相等;等角的余角相等。

n

题型一:

作图题

例1、已知:

线段m、n。

(如图)

求作:

线段AC,使AC=m-n。

作法:

(1)作射线AM;

(2)在射线AM上截取AB=m。

(3)在线段AB上截取BC=n。

则线段AC就是所求作的线段。

题型二:

线段的分类考虑

例2已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,求线段AC的长.

解:

本题分两种情况:

如图4—4—9所示,当点C在线段AB的延长线上时,

AC=AB+BC=8+3=11(crn);

如图4—4—10所示,当点C在线段AB上时,

AC=AB-BC=8—3=5(cm).

所以线段AC的长为11cm或5cm.

例3经过任意三点中的两点共可以画出的直线条数是()

A.1或3B.3C.2D.1

解析:

这道题要分两种情况考虑:

一是这三点都在一条直线上时,就只能画出一条直线;二是这三点不在同一条直线上时,此时共可以画出三条直线.答案:

A

题型三:

两角互补、互余定义及其性质的应用

例4一个角的补角是这个角的4倍,求这个角的度数.

解:

设这个角是x°,则它的补角是(180-x)°.

由题意,得180-x=4x,解得x=36.所以这个角是36°.

点拨

本题主要考查补角定义的应用,数学中利用方程、转化思想,可将“形”的问题转化为“数”的问题研究,从而简捷解决问题.

例5如果一个角的补角是120°,那么这个角的余角是()

A.30°B.60°C.90°D.150°

解析:

本题是对余角、补角的综合考查,先根据这个角的补角是120°,求出这个角是60°,再求出它的余角是30°.答案:

A

例6根据补角的定义和余角的定义可知,10°的角的补角是170°,余角是80°;15°的角的补角是165°,余角是75°;32°的角的补角是148°,余角是58°.….观察以上各组数据,你能得出怎样的结论?

请用任意角α代替题中的10°、15°、32°的角来说明你的结论.

解:

结论为:

一个角的补角比这个角的余角大90°.

说明:

设任意角是α(0<α<90°),α的补角是180°-α,α的余角是90°-α,

则(180°-α)-(90°-α)=90°.

题型四:

角的有关运算

例7如图4—4—3所示,AB和CD都是直线,∠AOE=90°,∠3°=∠FOD,∠1=27°20′,求∠2、∠3的度数.

解:

因为∠AOE=90°,

所以∠2=90°-∠1=90°-27°20′=62°40′.

又因为∠AOD=180°-∠1=152°40′,∠3=∠FOD,

所以∠3=

∠AOD=76°20′.

所以上2=62°40′,∠3=76°20′.

例8如图4—4—4所示,OB、OC是∠AOD内任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=α,∠BOC=β,用α、β表示∠AOD.

解:

因为∠MON=α,∠BOC=β,

所以∠BOM+∠CON=∠MON-∠BOC=α-β

又OM平分∠AOB,ON平分∠COD,

所以∠AOB+∠COD=2∠BOM+2∠CON

=2(∠BOM+∠CON)=2(α-β),

所以∠AOD=∠AOB+∠COD+∠BOC=2(α-β)+β=2α-β.

例9

(1)用度、分、秒表示54.12°.

(2)32°44′24″等于多少度?

(3)计算:

133°22′43″÷3.

解:

(1)因为0.12°=60′×0.12=7.2′,0.2′=60″×0.2=12″,

所以54.12°=54°7′12″.

(2)因为24″=(

)′×24=0.4′,44.4′=(

)°×44.4=0.74°,

所以32°44′24″=32.74°.

(3)133°22′43″÷3=(132°+82′)÷3+43″÷3=44°+82′÷3+43″÷3

=44°+(81′+1′)÷3+43″÷3=44°+27′+1′÷3+43″÷3

=44°+27′+103″÷3≈44°+27′+3″=44°27′3″.

方法总结

角的有关运算是指角的单位换算和角的加、减、乘、除运算.角度制的单位是60进制的,和计量时间的时、分、秒一样.加减时,要将度、分、秒分别相加、相减,分、秒逢60要进位,而相减不够时要借1作60;度、分、秒形式乘一个数时,要将度、分、秒分别乘这个数,分、秒逢60进位;度、分、秒形式除以一个数时,也是将度、分、秒分别除以这个数,不过要将高位的余数转化成低位,与原位上的数相加后再除以这个

数.

题型五:

钟表的时针与分针夹角问题

例10、15:

25时钟面上时针和分针所构成的角是度.

解析:

起始时刻定为15:

00(下午3点整时,时针和分针构成的角是90°),终止时刻为15:

25,从图4—4—5中可以看出分针从12转到5用了25分钟,转了6°×25=150°,时针转了0.5°×25=1

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > PPT模板 > 简洁抽象

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1