基于单片机温度控制系统设计的输入通道设计部分课程设计任务书.docx
《基于单片机温度控制系统设计的输入通道设计部分课程设计任务书.docx》由会员分享,可在线阅读,更多相关《基于单片机温度控制系统设计的输入通道设计部分课程设计任务书.docx(37页珍藏版)》请在冰豆网上搜索。
基于单片机温度控制系统设计的输入通道设计部分课程设计任务书
课程设计任务书
学院
专业
学生姓名
班级学号
课程设计题目
基于单片机温度控制系统设计-----输入通道设计
实践教学要求与任务:
1)构成单片机温度控制系统
2)输入通道设计
3)实验调试
4)THFCS-1现场总线控制系统实验
5)撰写实验报告
工作计划与进度安排:
1)第1~2天,查阅文献,构成单片机温度控制系统
2)第3~4天,输入通道设计
3)第5~6,实验调试
4)第7~9天,THFCS-1现场总线控制系统实验
5)第10天,撰写实验报告
指导教师:
201年月日
专业负责人:
201年月日
学院教学副院长:
201年月日
摘要
温度是工业控制中主要的被控参数之一,特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足重轻的作用。
随着电子技术和微型计算机的迅速发展,微机测量和控制技术得到了迅速的发展和广泛的应用。
单片机具有处理能强、运行速度快、功耗低等优点,应用在温度测量与控制方面,控制简单方便,测量范围广,精度较高。
本设计以AT89S51单片机为核心的温度控制系统的工作原理和设计方法。
配以DS18B20数字温度传感器,该温度传感器可自行设置温度上下限。
单片机将检测到的温度信号与输入的温度上、下限进行比较,由此作出判断是否启动继电器以开启备。
本设计还加入了常用的数码管显示及状态灯显示灯常用电路,使整个设计更加完整更加灵活。
关键词:
单片机温度控制输入通道设计
1引言
1.1温度控制系统设计的背景
电子技术的发展,特别是随着大规模集成电路的产生,给人们的生活带来了根本性的变化,如果说微型计算机的出现使现代的科学研究得到了质的飞跃,那么单片机技术的出现则是给现代工业控制测控领域带来了一次新的革命。
自动控制系统在各个领域尤其是工业领域中有着及其广泛的应用,温度控制是控制系统中最为常见的控制类型之一。
随着单片机技术的飞速发展,通过单片机对被控对象进行控制日益成为今后自动控制领域的一个重要发展方向,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。
例如:
在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。
采用MCS-51单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。
因此,单片机对温度的控制问题是一个工业生产中经常会遇到的问题。
单片机在电子产品中的应用已经越来越广泛,在很多的电子产品中也用到了温度检测和温度控制。
随着温度控制器应用范围的日益广泛和多样,各种适用于不同场合的智能温度控制器应运而生。
1.2温度控制系统的目的
本设计的内容是温度测试控制系统,控制对象是温度。
温度控制在日常生活及工业领域应用相当广泛,比如温室、水池、发酵缸、电源等场所的温度控制。
而以往温度控制是由人工完成的而且不够重视,其实在很多场所温度都需要监控以防止发生意外。
针对此问题,本系统设计的目的是实现一种可连续高精度调温的温度控制系统,它应用广泛,功能强大,小巧美观,便于携带,是一款既实用又廉价的控制系统。
1.3温度控制系统完成的功能
本设计是对温度进行实时监测与控制,设计的温度控制系统实现了基本的温度控制功能:
当温度低于设定下限温度时,系统自动启动加热继电器加温,使温度上升,同时绿灯亮。
当温度上升到下限温度以上时,停止加温;当温度高于设定上限温度时,系统自动启动风扇降温,使温度下降,同时红灯亮。
当温度下降到上限温度以下时,停止降温。
温度在上下限温度之间时,执行机构不执行。
三个数码管即时显示温度,精确到小数点一位。
2总体设计方案
考虑使用温度传感器,结合单片机电路设计,采用一只DS18B20温度传感器,直接读取被测温度值,之后进行转换,依次完成设计要求。
在本系统的电路设计方框图如图2.1所示,它由三部分组成:
①控制部分主芯片采用单片机AT89S51;②显示部分采用3位LED数码管以动态扫描方式实现温度显示;③温度采集部分采用DS18B20温度传感器。
加热继电器
电风扇继电器
图2.1温度计电路总体设计方案
2.1控制部分
单片机AT89S51具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用,系统应用三节电池供电。
2.2显示部分
显示电路采用3位共阳LED数码管,从P0口送数,P2口扫描。
2.3温度采集部分
DS18B20温度传感器是美国DALLAS公司生产的,DS18B20可组网数字温度传感器芯片封装而成,具有耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。
这一部分主要完成对温度信号的采集和转换工作,由DS18B20数字温度传感器及其与单片机的接口部分组成。
数字温度传感器DS18B20把采集到的温度通过数据引脚传到单片机的P1.0口,单片机接受温度并存储。
此部分只用到DS18B20和单片机,硬件很简单。
1、DS18B20的性能特点如下:
1)独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯;
2)测温范围-55℃~+125℃,固有测温分辨率0.5℃;
3)支持多点组网功能,多个DS18B20可以并联在唯一的三线上,最多只能并联8个,如果数量过多,会使供电电源电压过低,从而造成信号传输的不稳定,实现多点测温;
4)工作电源:
3~5V/DC;
5)在使用中不需要任何外围元件;
6)测量结果以9~12位数字量方式串行传送;
7)温度以3位数字显示;
8)用户可定义报警设置,报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件;
9)负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。
2、DS18B20的内部结构
DS18B20采用3脚PR-35封装,如图2.2所示;DS18B20的内部结构,如图2.4所示。
图2.2DS18B20封装
3、DS18B20内部结构主要由四部分组成
1)64位光刻ROM。
开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后8位是前56位的CRC校验码,这也是多个DS18B20可以采用一线进行通信的原因[10]。
64位闪速ROM的结构如下.
8b检验CRC
48b序列号
8b工厂代码(10H)
MSBLSBMSBLSBMSBLSB
表2.3ROM结构
图2.4DS18B20内部结构
2)非挥发的温度报警触发器TH和TL,可通过软件写入用户报警上下限值。
3)高速暂存存储,可以设置DS18B20温度转换的精度。
DS18B20温度传感器的内部存储器还包括一个高速暂存RAM和一个非易失性的可电擦除的E2PRAM。
高速暂存RAM的结构为8字节的存储器,结构如表2.5所示。
头2个字节包含测得的温度信息,第3和第4字节TH和TL的拷贝,是易失的,每次上电复位时被刷新。
第5个字节,为配置寄存器,它的内容用于确定温度值的数字转换分辨率。
DS18B20工作时寄存器中的分辨率转换为相应精度的温度数值。
它的内部存储器结构和字节定义如图2.6所示。
低5位一直为1,TM是工作模式位,用于设置DS18B20在工作模式还是在测试模式。
Byte0
温度测量值LSB(50H)
Byte1
温度测量值MSB(50H)
E2PROM
Byte2
TH高温寄存器
----
TH高温寄存器
Byte3
TL低温寄存器
----
TL低温寄存器
Byte4
配位寄存器
----
配位寄存器
Byte5
预留(FFH)
Byte6
预留(0CH)
Byte7
预留(IOH)
Byte8
循环冗余码校验(CRC)
表2.5DS18B20内部存储器结构
TM
R1
R0
1
1
1
1
1
图2.6DS18B20字节
DS18B20出厂时该位被设置为0,用户要去改动,R1和R0决定温度转换的精度位数,来设置分辨率,如表2.7。
由表可见,分辨率越高,所需要的温度数据转换时间越长。
因此,在实际应用中要将分辨率和转换时间权衡考虑。
高速暂存RAM的第6、7、8字节保留未用,表现为全逻辑1。
第9字节读出前面所有8字节的CRC码,可用来检验数据,从而保证通信数据的正确性。
当DS18B20接收到温度转换命令后,开始启动转换。
转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1、2字节。
单片机可以通过单线接口读出该数据,读数据时低位在先,高位在后,数据格式以0.0625℃/LSB形式表示。
当符号位S=0时,表示测得的温度值为正值,可以直接将二进制位转换为十进制;当符号位S=1时,表示测得的温度值为负值,要先将补码变成原码,再计算十进制数值。
表2.8是一部分温度值对应的二进制温度数据。
R1
R0
分辨率/位
温度最大转向时间/ms
0
0
9
93.75
0
1
10
187.5
1
0
11
375
1
1
12
750
表2.7DS18B20温度转换时间表
温度/℃
二进制表示
十六进制表示
+125
0000011111010000
07D0H
+85
0000010101010000
0550H
+25.0625
0000000110010000
0191H
+10.125
0000000010100001
00A2H
+0.5
0000000000000010
0008H
0
0000000000001000
0000H
-0.5
1111111111110000
FFF8H
-10.125
1111111101011110
FF5EH
-25.0625
1111111001101111
FE6FH
-55
1111110010010000
FC90H
表2.8一部分温度对应值表
4)CRC的产生
在64bROM的最高有效字节中存储有循环冗余校验码(CRC)。
主机根据ROM的前56位来计算CRC值,并和存入DS18B20中的CRC值做比较,以判断主机收到的ROM数据是否正确。
另外,由于DS18B20单线通信功能是分时完成的,它有严格的时隙概念,因此读写时序很重要。
系统对DS18B20的各种操作按协议进行。
操作协议为:
初使化DS18B20(发复位脉冲)→发ROM功能命令→发存储器操作命令→处理数据。
3DS18B20温度传感器简介
3.1温度传感器的历史及简介
温度的测量是从金属(物质)的热胀冷缩开始。
水银温度计至今仍是各种温度测量的计量标准。
可是它的缺点是只能近距离观测,而且水银有毒,玻璃管易碎。
代替水银的有酒精温度计和金属簧片温度计,它们虽然没有毒性,但测量精度很低,只能作为一个概略指示。
不过在居民住宅中使用已可满足要求。
在工业生产和实验研究中为了配合远传仪表指示,出现了许多不同的温度检测方法,常用的有电阻式、热电偶式、PN结型、辐射型、光纤式及石英谐振型等。
它们都是基于温度变化引起其物理参数(如电阻值,热电势等)的变化的原理。
随着大规模集成电路工艺的提高,出现了多种集成的数字化温度传感器。
3.2DS18B20的工作原理
3.2.1DS18B20工作时序
根据DS18B20的通讯协议,主机控制DS18B20完成温度转换必须经过三个步骤:
1.每一次读写之前都必须要对DS18B20进行复位;
2.复位成功后发送一条ROM指令;
3.最后发送RAM指令,这样才能对DS18B20进行预定的操作。
复位要求主CPU将数据线下拉500微秒,然后释放,DS18B20收到信号后等待15~60微秒左右后发出60~240微秒的存在低脉冲,主CPU收到此信号表示复位成功。
其工作时序包括初始化时序、写时序和读时序,具体工作方法如图2.1,2.2,2.3所示。
(1)初始化时序
图3.1初始化时序
总线上的所有传输过程都是以初始化开始的,主机响应应答脉冲。
应答脉冲使主机知道,总线上有从机设备,且准备就绪。
主机输出低电平,保持低电平时间至少480us,以产生复位脉冲。
接着主机释放总线,4.7KΩ上拉电阻将总线拉高,延时15~60us,并进入接受模式,以产生低电平应答脉冲,若为低电平,再延时480us。
(2)写时序
图3.2写时序
写时序包括写0时序和写1时序。
所有写时序至少需要60us,且在2次独立的写时序之间至少需要1us的恢复时间,都是以总线拉低开始。
写1时序,主机输出低电平,延时2us,然后释放总线,延时60us。
写0时序,主机输出低电平,延时60us,然后释放总线,延时2us。
(3)读时序
图3.3读时序
总线器件仅在主机发出读时序是,才向主机传输数据,所以,在主机发出读数据命令后,必须马上产生读时序,以便从机能够传输数据。
所有读时序至少需要60us,且在2次独立的读时序之间至少需要1us的恢复时间。
每个读时序都由主机发起,至少拉低总线1us。
主机在读时序期间必须释放总线,并且在时序起始后的15us之内采样总线状态。
主机输出低电平延时2us,然后主机转入输入模式延时12us,然后读取总线当前电平,然后延时50us
3.2.2ROM操作命令
当主机收到DSl8B20的响应信号后,便可以发出ROM操作命令之一,这些命令如表3.4ROM操作命令。
指令
约定代码
功能
读ROM
33H
读DS18B20ROM中的编码
符合ROM
55H
发出此命令之后,接着发出64位ROM编码,访问单线总线上与该编码相对应的DS18B20使之作出响应,为下一步对该DS18B20的读写作准备
搜索ROM
0F0H
用于确定挂接在同一总线上DS18B20的个数和识别64位ROM地址,为操作各器件作好准备
跳过ROM
0CCH
忽略64位ROM地址,直接向DS18B20发温度变换命令,适用于单片工作。
告警
搜索
命令
0ECH
执行后,只有温度超过设定值上限或者下限的片子才做出响应
温度
变换
44H
启动DS18B20进行温度转换,转换时间最长为500MS,结果存入内部9字节RAM中
读暂
存器
0BEH
读内部RAM中9字节的内容
写暂
存器
4EH
发出向内部RAM的第3,4字节写上、下限温度数据命令,紧跟读命令之后,是传送两字节的数据
复制
暂存器
48H
将E2PRAM中第3,4字节内容复制到E2PRAM中
重调E2PRAM
0BBH
将E2PRAM中内容恢复到RAM中的第3,4字节
读供电
方式
0B4H
读DS18B20的供电模式,寄生供电时DS18B20发送“0”,外接电源供电DS18B20发送“1”
表3.4ROM操作命令
3.3DS18B20的测温原理
3.3.1DS18B20的测温原理:
每一片DSl8B20在其ROM中都存有其唯一的48位序列号,在出厂前已写入片内ROM中。
主机在进入操作程序前必须用读ROM(33H)命令将该DSl8B20的序列号读出。
程序可以先跳过ROM,启动所有DSl8B20进行温度变换,之后通过匹配ROM,再逐一地读回每个DSl8B20的温度数据。
DS18B20的测温原理如图3.5所示,图中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1,高温度系数晶振随温度变化其震荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入,图中还隐含着计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲后进行计数,进而完成温度测量。
计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55℃所对应的基数分别置入减法计数器1和温度寄存器中,减法计数器1和温度寄存器被预置在-55℃所对应的一个基数值。
减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。
图中的斜坡累加器用于补偿和修正测温过程中的非线性,其输出用于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直至温度寄存器值达到被测温度值。
另外,由于DS18B20单线通信功能是分时完成的,他有严格的时隙概念,因此读写时序很重要。
系统对DS18B20的各种操作必须按协议进行。
操作协议为:
初始化DS18B20(发复位脉冲)→发ROM功能命令→发存储器操作命令→处理数据。
图3.5测温原理内部装置
3.3.2DS18B20的测温流程
图3.6DS18B20测温流程
.
4单片机接口设计
4.1设计原则
DS18B20可以采用两种方式供电,一种是采用电源供电方式,此时DS18B20的1脚接地,2脚作为信号线,3脚接电源。
另一种是寄生电源供电方式,如图3.1所示单片机端口接单线总线,为保证在有效的DS18B20时钟周期内提供足够的电流,可用一个MOSFET管来完成对总线的上拉。
本设计采用电源供电方式,P1.1口接单线总线为保证在有效的DS18B20时钟周期内提供足够的电流,可用一个MOSFET管和89S51的P1.0来完成对总线的上拉。
当DS18B20处于写存储器操作和温度A/D变换操作时,总线上必须有强的上拉,上拉开启时间最大为10μs。
采用寄生电源供电方式是VDD和GND端均接地。
由于单线制只有一根线,因此发送接收口必须是三状态的。
主机控制DS18B20完成温度转换必须经过3个步骤:
●初始化;
●ROM操作指令;
●存储器操作指令。
4.2引脚连接
4.2.1晶振电路
单片机XIAL1和XIAL2分别接30PF的电容,中间再并个12MHZ的晶振,形成单片机的晶振电路。
4.2.2串口引脚
P0口接9个2.2K的排阻然后接到显示电路上。
P1.0温度传感器DS18B20如图4.1所示。
18B20
单片机
P1.0
VCC
GND
图4.1DS18B20与单片机的接口电路
P1.1和P1.2引脚接继电器电路的4.7K电阻上,P1口其他引脚悬空
P2口中P2.0、P2.1、P2.2、P2.3分别接到显示电路的4.7K电阻上,P2.5接蜂鸣器电路,其他引脚悬空
P3口中P3.5、P3.6、P3.7接到按键电路
4.2.3其它引脚
ALE引脚悬空,复位引脚接到复位电路、VCC接电源、VSS接地、EA接电源
5系统整体设计
5.1系统硬件电路设计
5.1.1主板电路设计
单片机的P1.0接DS18B20的2号引脚,P0口送数P2口扫描,P1.1、P1.2控制加热器和电风扇的继电器。
如附录2。
5.1.2各部分电路
(1)显示电路
显示电路采用了7段共阴数码管扫描电路,节约了单片机的输出端口,便于程序的编写。
图5.1显示电路图
(2)单片机电路
图5.2单片机电路引脚图
(3)DS18B20温度传感器电路
图5.3温度传感器电路引脚图
(4)继电器电路
图中P1.1引脚控制加热器继电器。
给.P1.1低电平,三极管导通,电磁铁触头放下来开始工作.
图5.4继电器电路图
(5)晶振控制电路
图5.5晶振控制电路图
(6)复位电路
图5.6复位电路图
5.2系统软件设计
5.2.1系统软件设计整体思路
一个应用系统要完成各项功能,首先必须有较完善的硬件作保证。
同时还必须得到相应设计合理的软件的支持,尤其是微机应用高速发展的今天,许多由硬件完成的工作,都可通过软件编程而代替。
甚至有些必须采用很复杂的硬件电路才能完成的工作,用软件编程有时会变得很简单,如数字滤波,信号处理等。
因此充分利用其内部丰富的硬件资源和软件资源,采用与S51系列单片机相对应的51汇编语言和结构化程序设计方法进行软件编程。
程序设计语言有三种:
机器语言、汇编语言和高级语言。
机器语言是机器唯一能“懂”的语言,用汇编语言或高级语言编写的程序(称为源程序)最终都必须翻译成机器语言的程序(成为目标程序),计算机才能“看懂”,然后逐一执行。
高级语言是面向问题和计算过程的语言,它可通过于各种不同的计算机,用户编程时不必仔细了解所用的计算机的具体性能与指令系统,而且语句的功能强,常常一个语句已相当于很多条计算机指令,于是用高级语言编制程序的速度比较快,也便于学习和交流,但是本系统却选用了汇编语言。
原因在于,本系统是编制程序工作量不大、规模较小的单片机微控制系统,使用汇编语言可以不用像高级语言那样占用较多的存储空间,适合于存储容量较小的系统。
同时,本系统对位处理要求很高,需要解决大量的逻辑控制问题。
MCS—51指令系统的指令长度较短,它在存储空间和执行时间方面具有较高的效率,编成的程序占用内存单元少,执行也非常的快捷,与本系统的应用要求很适合。
而且MCS—51指令系统有丰富的位操作(或称位处理)指令,可以形成一个相当完整的位操作指令子集,这是MCS—51指令系统主要的优点之一。
对于要求反应灵敏与控制及时的工控、检测等实时控制系统以及要求体积小、系统小的许多“电脑化”产品,可以充分体现出汇编语言简明、整齐、执行时间短和易于使用的特点。
本装置的软件包括主程序、读出温度子程序、复位应答子程序、写入子程序、以及有关DS18B20的程序(初始化子程序、写程序和读程序)
5.2.2系统程序流图
系统程序主要包括主程序,读出温度子程序,复位应答子程序,写入子程序等。
1)主程序
主程序的主要功能是负责温度的实时显示、读出并处理DS18B20的测量的当前温度值,温度测量每1s进行一次。
这样可以在一秒之内测量一次被测温度,其程序流程见图5.7所示。
通过调用读温度子程序把存入内存储中的整数部分与小数部分分开存放在不同的两个单元中,然后通过调用显示子程序显示出来
图5.7主程序流程图
2)读出温度子程序
读出温度子程序的主要功能是读出RAM中的9字节,在读出时需进行CRC校验,校验有错时不进行温度数据的改写。
DS18B20的各个命令对时序的要求特别严格,所以必须按照所要求的时序才能达到预期的目的,同时,要注意读进来的是高位在后低位在前,共有12位数,小数4位,整数7位,还有一位符号位。
DS18B20复位、应答子程序
跳过ROM匹配命令
写入子程序
温度转换命令
写入子程序
显示子程序(延时)
DS18B20复位、应答子程序
跳过ROM匹配命令
写入子程序
读温度命令子程序
图5.8读出温度子程序
3)复位、应答子程序
P1.0口清0
开始
延时537US
P1.