溶胶凝胶中独立的厚膜.docx

上传人:b****5 文档编号:7683408 上传时间:2023-01-25 格式:DOCX 页数:10 大小:1.13MB
下载 相关 举报
溶胶凝胶中独立的厚膜.docx_第1页
第1页 / 共10页
溶胶凝胶中独立的厚膜.docx_第2页
第2页 / 共10页
溶胶凝胶中独立的厚膜.docx_第3页
第3页 / 共10页
溶胶凝胶中独立的厚膜.docx_第4页
第4页 / 共10页
溶胶凝胶中独立的厚膜.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

溶胶凝胶中独立的厚膜.docx

《溶胶凝胶中独立的厚膜.docx》由会员分享,可在线阅读,更多相关《溶胶凝胶中独立的厚膜.docx(10页珍藏版)》请在冰豆网上搜索。

溶胶凝胶中独立的厚膜.docx

溶胶凝胶中独立的厚膜

Self-StandingThickFilms

INTRODUCTION

Oneofthemostimportanttechnologicalaspectsofsol–gelprocessingisthepreparationofthinfilmsbycommontechniquessuchasdip-orspin-coating.Awidevarietyofmaterialswithspecialfunctionsofopticalandopto-electronicimportancehavebeenproducedtodatebytheapplicationofthesecoatingmethods.However,thedip-andspin-coatingmethodsincludetheexperimentalexperiencethatinorganicfilmsthickerthan1μmarevirtuallyimpossibletodrywithoutcracksregardlessofthedryingrate(BrinkerandScherer,1990).

Ontheotherhand,therearevariouseconomicaldemandsforoxidefilmswithathicknessoftheorderofseveralmicrometersformedonsubstratematerialsinthefieldofelectrical,opticalandopto-electronicdevices(Kawachi,1990;Moilanen,1994).Theformationofsuchoxidefilmshavebeenmadebyrepetitivespin-coatingandrapidthermalannealing(SymsandHolmes,1994),flamehydrolysis(Kawachi,1983),plasmaCVD(Grand,1990),screenprinting(Fernandes,1995;Futakuchi,1999;Akiyama,1999),hydrothermalprocess(Shimomura,1991),gasdepositionprocess(Ichiki,1997),electrophoresis(Nishimori,1995),etc.Buteachprocesshasdrawbackinherenttothemethod.Someofthemaretime-consumingandlesseconomical.Othersrequirehighsinteringtemperatureandsometimesgivethefilmsoflowdensityorpoorflatness.

Recentlyanewtechniqueofformingoxidegelfilmscorrespondingtooxidefilmsofseveralto20μminthicknessbasedoninterfacialpolymerizationwasdevelopedbyaresearchgroupofTokyoInstituteofTechnology(Yamane,1994).Thetechniqueoriginallydevelopedaimingtheformationofathicksilicaglassfilmonasiliconsubstrateforthepurposeofthefabricationofaplanerwaveguideenlargedtherestrictedfilmthicknessrelatedtoconventionalsol–gelprocessingandwasextendedtotheformationofthickPZTfilmsusedforpiezoelectricdevicesinMEMSsuchasmicro-actuators,sensors,ultrasonictransducers,ultrasonicmotorsandsoon(Tsurumi,2003).

Theprincipleoftheinterfacialpolymerizationmethodisbasedonthehydrolysisandpolycondensationofprecursorsattheinterfaceoftwoimmiscibleliquidswithoutdirectcontactwiththesubstratesurface.Theevaporationoftheliquidintheupperphaseandthesubsequentcarefuldrainageoftheliquidinthebottomphasecausesagentleplacementofthefreestandinggelfilmontothesubstratesurfacewithoutformationofchemicalbonding,whichisofgreatadvantageoverspin-ordip-coatinginavoidingcracksduringdrying.

Inthisarticle,theoutlineofthemethod,effectsofvariousreactionparametersonthegelfilmpropertieswillbeintroducedinthecaseofboththicksilicaglassfilmandPZTfilmonsiliconsubstrates.

OUTLINEOFGELFILMFORMATIONBYANINTERFACIALPOLYMERIZATION

Theformationofafree-standinggelfilmbyaninterfacialpolymerizationiscarriedoutwithinacylindricalcontainerhavingadrainpipeatitsbottom.First,asubstratematerialonwhichtheformedgelfilmisplacedissetnearthebottomofthecylindricalcontainer.Thenwaterforthehydrolysisofanalkoxideispouredinthecontainertocoverthesubstratetothelevelseveralmillimeterabovethesurface.Next,theprecursorsolutionpreparedbydissolvingthealkoxideinanorganicsolventisgentlyporedontowater.

Figure16-1.Schematicillustrationofgelfilmformationprocessbyaninterfacialpolymerizationmethod.

Thehydrolysisandpolycondensationofthealkoxidetakesplaceattheinterfaceformedbetweentwoimmiscibleliquids.Thereactionproceedsuntiltheintroducedalkoxideisspentandturnsintoagelfilm.Theformedgelfilmseparatesfromthecontainerwallbythecapillaryforceinducedbytheevaporationoftheorganicsolventandshrinkstosomeextentwithoutrestrictionfromthesubstrate.Afterthecompleteevaporationoftheorganicsolvent,theformedgelfilmisplacedonthesubstratebydrainingwaterfromthebottomofthecontainerandsubjectedtodryinginanambientatmosphere.TheschematicillustrationoftheprocessisgiveninFigure16-1.

Thecompositionandtheamountoftheprecursorsolutionandthediameterofthecontainerdeterminethepropertiesofthefilmsuchasporousstructure,thickness,andsoon.Theprecursorsolutionscontainingproperamountoffineparticles,aswellasalkoxides,aresometimesusedinordertoreducetheshrinkageduringdrying.Waterforthehydrolysisofthealkoxideusuallycontainsappropriatecatalyst.

PREPARATIONOFASILICAFILM

PrecursorSolution

Thepreparationoftheprecursorsolutionbeginswiththedissolutionofsiliconalkoxideoritsderivativesinanorganicsolventlikehexanethatmeetstheconditions:

(1)immisciblewithwater,

(2)lowerdensitythanwater,and(3)relativelyhighvaporpressure.Amongcommerciallyavailablesiliconalkoxidesandtheirderivatives,ethylsilicate40(E-40),partiallyhydrolyzedtetraethoxysilane(TEOS)comprisingthe5-memberedoligomers,turnedouttobethemostsuitablebythesurveyofvariousmaterialsincludingTEOS,tetramethoxysilane(TMOS)anditsderivativemethylsilicate51(Yamane,1994).

Figure16-2.DependenceoffilmthicknessontheconcentrationofE-40inhexane(reactionwithammoniawaterofpH=11for24h).

TheadvantageofusingE-40ratherthanTMOSorTEOSisattributedtothelowhydrolysisrateofsiliconalkoxide.Asitiswidelyknown,thehydrolysisofTMOSorTEOSisenhancedbyacidiccatalyst,whilethepolycondensationratherproceedsunderbase-catalyzedcircumstance.Ontheotherhand,thecatalystthatcanbeaddedinthewaterfortheinterfacialpolymerizationreactionislimitedtoeitheracidorbaseonly.Then,theuseofE-40whichalreadyhadbeenhydrolyzedanddoesnotneedtheassistanceofacidcatalystisobviouslyadvantageousovertheemploymentofTMOSorTEOS.

InthefilmformationfromE-40,itsconcentrationintheprecursorsolutionisobviouslyoneoftheimportantparametersdeterminingthereactiontimetoobtainagelfilmofdesiredthickness.Figure16-2showstherelationbetweentheconcentrationofE-40andtheweightofgelfilmpersquarecentimeterobtainedbythereactionwithammoniawaterofpH=11for24h.Itisknownfromthefigurethatafilmofabout2mg/cm2,whichcorrespondstothethicknessofabout10μmintermsoftheeventualsilicaglassfilm,isobtainedfromtheprecursoroftheconcentration1.2–1.5mol/lundergivenexperimentalconditions.

CatalysttobeUsedfortheReaction

Theeffectsofcatalystsonthegelfilmformationaredifferentdependingonthetypeofcatalystanditsconcentration,i.e.,pHofwater(Shulze-Bergkamen,1995,Yamane,1997).Forexample,agelfilmisobtainablefromE-40bythereactionwithammoniawaterofpH>10.ThethicknessofthefilmincreaseswiththeincreaseinpHofwaterasitisseeninFigure16-3.ItisalsopossibletoformafilmintheregionpH<4byusingaceticacid,formicacidandcitricacidasacatalyst,althoughthecatalyticeffectisveryweakcomparedwiththatofammonia.Differentfromtheeffectsoftheseweakelectrolytes,however,thecatalyticeffectofstrongelectrolytessuchasNaOH,HCl,orHNO3isnotalmostappreciable.OnlyatraceoffilmisdetectedbythereactionwithaqueoussolutionsoftheseelectrolyteseveninthepHregionssimilartothoseappliedtoammoniaoraceticacid,i.e.,pH>10orpH<4.

AnexampleoftheeffectsofthetypeofbasecatalystsonfilmformationfromE-40isshowninTable16-1alongwiththesolubilityofthesecatalystsinwaterandthegeltimeformonolithformationwiththesamecatalysts.Thereactionconditionswerethesameforallthecases,i.e.,theconcentrationofE-40was2mol/l,pH=10.6,thereactiontemperatureTandtimetwere30°Cand20h,respectively.Itisknownfromthetablethatthethicknessofthegelfilmdecreasesasthesolubilityofthecatalystinwaterincreases,whilethegeltimesformonolithformationfromthesimilarprecursorofpH=9.5areallthesamewithinexperimentalerror.Asthesolubilityofthesecatalystsinanon-polarorganicsolventsuchhexaneincreasesintheorderoppositetothatinwater,i.e.,NH3>Na2CO3>NaOH,thedifferencesintheeffectsshowninthetableisattributedtothedifferenceintheconcentrationofthecatalystsintheupperorganicphase.Thiswasconfirmedbytheexperimentcarriedoutbydirectlydissolvingtri-methylamineinhexane.Therateofgelfilmformationwasdramaticallyincreasedcomparedwithammonia-catalyzedreaction,asitisknownfromTable16-2.Only4hofreactiontimewasenoughtoobtainagelfilmcorrespondingtoaglassfilmof10mminthickness,i.e.,12mg/cm2,evenwithmuchmoredilutedprecursorsolution.ThisshowsthatthereactionproceedsquiteefficientlyifacatalystiscontainedintheupperorganicphasealongwithE-40.

TABLE16-1.EFFECTSOFVARIOUSBASECATALYSTSONFILMFORMATIONANDTHEIRSOLUBILITYDATA(YAMANE,1997)

Catalyst

Filmthickness(gcm–2)a

Geltime(h)b

Ammonia

40±10×10‒4

50–60

NaOH

2±0.5×10‒4

50–60

Na2CO3

10±2×10‒4

50–60

Solubilityparameter(cal/cm3)2

Solubilityinhexane(molefraction)

Solubilityinwater(molefraction)

H2O

23.8

2.55×10–1

C6H14

7.25

4.41×10–27

NH3

13

4.89×10–1

3.49×10–2

NaOH

–c

4.90×10–1

Na2CO3

1.21×10–2

apH=10.6;CE–40=200mll–1;T=30°C;t=20h.

bE-40/MeOh/H2O=1/1/1(ml);pH=9.5;T=60°C.

cNoavailabledata.

Figure16-3.DependenceoffilmthicknessonthepHofammoniawater(concentrationofE-40inhexane;1.2mol/l,reactiontime;24h)(Yamaneetal.,1994).

TABLE16-2.COMPARISONOFTHEEFFECTSOFTRI-

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 职业教育 > 中职中专

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1