变频泵的选用.docx
《变频泵的选用.docx》由会员分享,可在线阅读,更多相关《变频泵的选用.docx(8页珍藏版)》请在冰豆网上搜索。
变频泵的选用
关于变频调速给水的基本原理
关于变频调速给水的基本原理
目前,变频调速生活给水在建筑给水中应用越来越广,其主要原因是:
1.变频调速给水的供水压力可调,可以方便地满足各种供水压力的需要。
在设计阶段可以降低对供水压力计算准确度的要求,因为随时可以方便地改变供水压力。
但在选泵时应注意,泵的扬程宜大一些,因为变频调速其最大压力受水泵限制。
最低使用压力也不应太小,因为水泵不允许在低扬程大流量下长期超负荷工作,否则应加大变频器和水泵电机的容量,以防止发生过载。
2.目前,变频器技术已很成熟,在市场上有很多国内外品牌的变频器,这为变频调速供水提供了充份的技术和物质基础。
变频器已在国民经济各部门广泛使用。
任何品牌的变频器与变频供水控制器配合,即可实现多泵并联恒压供水。
因为建筑供水的应用广泛,有些变频器设计生产厂家把变频供水控制器直接做在供水专用变频器中;这种变频器具有可靠性好,使用方便的优点。
3.变频调速恒压供水具有优良的节能效果。
由水泵-管道供水原理可知,调节供水流量,原则上有二种方法;一是节流调节,开大供水阀,流量上升;关小供水阀,流量下降。
调节流量的第二种方法是调速调节,水泵转速升高,供水流量增加;转速下降,流量降低,对于用水流量经常变化的场合(例如生活用水),采用调速调节流量,具有优良的节能效果。
我国国家科委和国家经贸委在《中国节能技术政策大纲》中把泵和风机的调速技术列为国家九五计划重点推广的节能技术项目。
应当指出,变频恒压供水节能的效果主要取决于用水流量的变化情况及水泵的合理选配,为了使变频恒压供水具有优良的节能效果,变频恒压供水宜采用多泵并联的供水模式。
由多泵并联恒压变频供水理论可知多泵并联恒压供水,只要其中一台泵是变频泵,其余全是工频泵,可以实现恒压变量供水。
在变频恒压变量供水当中,变频泵的流量是变化的,当变频泵是各并联泵中最大,即可保证恒压供水。
多泵并联恒压供水,在设计上可做到在恒压条件下各工频泵的效率不变(因工况不变),并使之处于高效率区工作,变频泵的流量是变化的,其工作效率随流量而改变。
因为采用多泵并联恒压供水,变频泵的功率降低,从而可以降低多泵并联变频恒压供水系统的能耗,改善节能状况。
当多泵并联恒压供水系统采用具有自动睡眠功能的变频器,当用水流量接近于零,变频泵能自动睡眠停泵,从而可以做到不用水时自动停泵而没有能量损耗,具有最佳的节能效果。
多泵并联变频恒压变量供水的工作模式通常是这样的:
当用水流量小于一台泵在工频恒压条件下的流量,由一台变频泵调速恒压供水;当用水流量增大,变频泵的转速自动上升;当变频泵的转速上升到工频转速,为用水流量进一步增大,由变频供水控制器控制,自动启动一台工频泵投入,该工频泵提供的流量是恒定的(工频转速恒压下的流量),其余各并联工频泵按相同的原理投入。
在多泵并联变频恒压变量的供水情况下,当用水流量下降,变频调速泵的转速下降(变频器供电频率下降);当频率下降到零流量的时候,变频供水控制器发出一个指令,自动关闭一台工频泵使之超出并联供水。
为了减少工频泵自动投入或超出时的冲击(水力的或电流的冲击)。
在投入时,变频泵的转速自动下降,然后慢慢上升以满足恒压供水的要求。
在超出时,变频泵的转速应自动上升,然后慢慢下降以满足恒压供水的要求。
上述频率自动上升,下降由供水变频控制器控制。
另一种变频供水模式通常叫做恒压变量循环状启动并先开先停的工作模式。
在这种供水模式中,当供水流量少于变频泵在恒压工频下的流量时,由变频泵自动调速供水,当用水流量增大,变频泵的转速升高。
当变频泵的转速升高到工频转速,由变频供水控制器控制把该台水泵切换到由工频电网直接供电(不通过变频器供电)。
变频器则另外启动一台并联泵投入工作。
随用水流量增大,其余各并联泵均按上述相同的方式软启动投入。
这就是循环软启动投入方式。
当用水流量减少,各并联工频泵按次序关泵超出,并泵超出的顺序按先投入先关泵超出的原则由变频控制器单板计算机控制。
由上述可见,对于变频恒压变量给水通常有两种工作模式,一是变频泵固定方式,二是变频循环软启动工作方式。
在变频泵固定方式中,各并联水泵是按工频方式自动投入或超出的。
因为变频泵固定不变,当用水流量变化,变频泵始终处于运行状态,因此变频泵的运行时间最长。
为了均衡各水泵的运行时间,对于变频泵固定运行方式,可以设计成变频泵定时轮换运行方式。
即当某一台变频泵运行一定时间后,由变频控制器控制变频泵自动进行轮换。
例如:
开始时1泵变频,2-3泵工频,当1泵变频运行T时间后(T可按序设定)自动轮换为2泵变频,3-1泵工频;在此状态下运行T时间后自动轮换为3泵变频,1-2工频,……。
如此反覆进行定时轮换。
显然,具有变频泵自动轮换控制的变频恒压变量供水系统,变频泵是定时改变的,即任何一台并联泵都有可能成为变频泵。
由变频恒压变量供水理论可知,为了保证恒压供水,变频泵必须是各并联泵中的最大者。
为此,对于变频恒压供水并变频泵自动定时轮换的水机,各并联水泵的大小应相同以保证恒压供水。
按变频器工作原理,在运行中的变频器不允许在其输出端进行切换;否则在切换过程中会使变频器中的某些电子器件受到大电流冲击而降低其寿命。
在变频泵自动轮换过程中,要在变频器的输出端进行切换;为了保护变频器,在进行自动切换之前应使变频器停止运行。
在变频器停止运行的条件下,在其输出端进行切换。
在切换好后再重新启动变频器而恢复正常运行。
因此,自动轮换控制的电路比较复杂,会增加变频控制柜的造价并降低其使用可靠性。
当变频恒压变量供水系统具有变频泵自动轮换功能,其优点是各并联泵可定时轮换到变频运行,使各并联泵的磨损均衡。
但是,在任一台泵变频运行时,万一水泵故障有可能使变频器保护跳闸而停止工作。
各并联水泵是由变频器控制运行的;当变频器跳闸,必然使所有并联水泵停机而中断供水。
因此,当水泵的可靠性一定,具有自动轮换控制功能的变频恒压供水机的供水可靠性将低于不具备自动轮换控制功能的变频恒压供水机。
笔者认为,供水可靠性是主要矛盾。
因此我们不主张采用具有自动轮换控制功能的变频恒压给水系统。
多泵并联,循环软启动的变频恒压给水系统,同样存在上述变频恒压自动轮换工作模式的缺点。
为了保证恒压供水,同样要求各并联泵的大小相同。
综上可述,为保证供水可靠性,笔者不主张采用自动轮换和变频循环软启动的工作模式。
清华紫光集团自动化工程部在其《ABB恒压供水系统用户手册》中说,“循环软启动!
这是一个危险的诱惑,很多搞恒压供水的人热衷于发展此项技术,但我们的建议是否定的。
……”我们赞同清华紫光集团自动化工程部的上述学术见解,不热衷于搞变频循环软启动供水。
由水泵-管路供水原理可知,当节流损耗等于零,则供水系统具有最佳的节能效果,此时水泵的供水扬程完全消耗在供水高度和供水流阻损失上。
这种变频调整供水称为理态的变压变量供水,这种供水系统的扬程-流量曲线和管路系统的流阻—流量曲线重合。
在理想的变压变量供水系统中,在用水点,其扬程恒定,属于恒压供水。
在实际建筑中,用水点是多处,不是一处,因此很难确定何处是恒压用水点。
变压变量供水系统没有通用性,在工程上很少应用。
一种实用的变压变量供水系统叫做准变压变量供水系统;在准变压变量供水系统中,其恒压值随用水流量增加而跃阶上升。
例如多泵并联恒压供水,当一台泵工作,其恒压值为P1;当投入一台泵,其恒压值自动变为P1+ΔP1;当二、三、四台泵投入,其恒压值分别自动变为P1+ΔP1+ΔP2,P1+ΔP1+ΔP2+ΔP3,P1+ΔP1+ΔP2+ΔP3+ΔP4,……。
其中P1,ΔP1,ΔP2,ΔP3,ΔP4,……可按需要设定;因此,准变压变量系统(设备)的供水特性可以十分接近理想的变压变量供水特性,具有优良的节能效果,这种供水系统(设备)具有通用性。
例如国际上著名的ABB供水专用变频器就具有上述的准变压变量供水控制功能。
事实上,在建筑供水当中,准变压变量供水模式也很少应用,因为在实际使用当中,很难给出ΔP1,ΔP2,ΔP3……等等的具体参数。
水泵组合可优化变频调速给水
一种新型给水方案,它既保留了变频调速恒压给水方案的优点:
出水流量连续可调、出水压力恒定、供水品质优良,又利用水泵组合技术降低了变频调速器的设计容量,提高了全系统的性能价格比。
目前,建筑物给水系统已逐渐放弃水塔、高位水箱、气压罐等传统技术,而采用电脑控制配合变频调速器对水泵电机无级调速、恒压给水。
这种技术在稳定水压、减少设备体积、节能等方面有很大进步,但由于使用了价格昂贵、技术复杂的变频调速器,降低了给水系统的性能价格比。
要解决这一问题,最有效的方法是在基本不降低给水系统性能前提下降低变频调速器的选用容量。
市场调查表明,变频调速器的容量越大,对工程造价的影响越大。
因此,在设计容量较大的给水系统时,如何降低变频调速器的容量,是提高工程性能价格比的最有效技术途径。
1、二进制变流量水泵组合稳压给水方法
在文献[1]中提出了一种不使用变频器(或气压罐)的自动稳压给水方法,即二进制变流量水泵组合稳压给水方法,现介绍如下:
该系统共有四台水泵M0、M1、M2、M3并联运行,组合给水。
各台水泵的额定扬程相同,额定流量呈二倍递变,即如M0的额定流量为q,则其他三台水泵M1、M2、M3的额定流量分别为2q、4q、8q。
以数字1表示水泵工作,数字0表示水泵停止工作。
于是M0、M1、M2、M3四台水泵的工作状态各用一位二进制数a0、a1、a2、a3加以表达。
它们组合在一起时的工作状态用一个四位的二进制数a3a2a1a0表示。
四位二进制数共有16种变化情况,这些变化状况不仅代表了当时水泵的组合,而且代表了当时水泵组合所能提供给水系统的出口流量Qt(在计算每种工况的出口流量时,近似忽略了由于水泵并联运行所造成的流量损失)。
即这个数越大,则出口流量越大;这个数越小,出口流量越小。
由此找到了根据用户用量大小,调节系统的出水流量以保证稳压给水的方法,其工作原理是:
电接点压力表设定上限压力H2、下限压力H1,由H1与H2构成了压力稳定区间。
如实际水压H偏低,H<H1时,可编程控制器按表1所示二进制数a3a2a1a0的递增规律切换水泵组合的工作状态,增加系统出水流量,水压上升直到H≥H1,如水压H偏高,H>H2时,可编程控制器按a3a2a1a0递减规律切换水泵组合的工作状态,减少系统流量,水压下降直至H<H2。
这样正常工作时H1<H<H2,供水系统的实际水压H就被稳定在H2与H1所规定的范围之内,达到稳定水压之目的。
利用这种技术,在稳压精度不高,用水负荷波动不太频繁情况下,不使用变频调速器亦可稳压供水。
但当稳压精度较高时,如不使用变频调速器,就必须配备较多的水泵(当然水泵的数目比传统水泵并联组合方法大为减少),对优化工程设计与方便施工十分不利。
另外,用户负荷变化较大时,不使用变频调速器会造成水泵组合频繁切换,使系统的动态稳压精度大为下降,电机的不断启停使能耗加剧。
综合评价较为理想的方案是把变频恒压给水技术与二进制变流量水泵组合稳压给水技术结合使用。
2、水泵组合优化变频调速恒压给水方案
该系统共有三台水泵(虚线所画水泵不计入)P0、P1、P2,其中P0与P1的额定流量为q,而P2的额定流量较大为2q,三台水泵的额定扬程相同。
另外只有P0采用变频器连续控制转速,而P1与P2直接工频电源开关控制。
这样配备的水泵系统与典型的变频恒压给水系统相比较,后者一般采用两台大小一致的相同水泵,一台变频调速控制、一台工频开关控制,多用了一台小水泵。
但由于变频器所控制的水泵流量下降一倍,故所采用变频器的容量也大致下降一倍。
实现了用容量小的变频器代替大容量的变频器,降低了整个系统的性能价格比。
对采用开关控制的水泵P1与P2,用数字1表示水泵工作,以数字0表示水泵停止工作,于是P1与P2的组合工作状态用一个两位的二进制数a2a1表示(如表2)。
P0采用变频器连续调节电机转速,把它与P1P2的组合工作相结合,则整个给水系统的流量可以在0≤Qt≤4q的区间连续变化(计Qt时近似忽略了由于水泵并联所造成的流量损失)。
表2与表1的不同之处在于:
由于变频调速水泵P0的加入,可以在0≤Qt≤4q的全流量范围内连续调节给水流量,故理论上可以实现高精度的恒压控制,而不是表1所描述的在一定范围内的稳压控制。
同时,与传统的恒压变频调速给水系统相比较,变频器的设计选用容量可减小一半。
因此,本方案兼具了二进制变流量水泵组合方案和典型变频调速恒压给水方案的优点。
若再增加一个容量为4q的水泵P3(虚线画出),依据相同的工作原理,给水系统的出口流量可以在0<Qt<8q范围内连续调节,同时水压基本恒定(见表3)。
通过以上二例可以总结出,如给水系统的设计流量为Q,则可以把变频水泵的容量设计成q=Q/2n(n=1、2、3……)。
同时再配备n台工频电源开关控制的水泵,这n台水泵的额定扬程相同且与变频水泵的扬程一致,但额定流量设计值却是两倍递变,即从小到大为:
q、2q、4q……2n-1q。
由这(n+1)台水泵(1台变频调速控制,n台工频开关控制)构成的水泵组合优化变频调速给水系统,即实现在全流量变化范围内高质量的恒压给水,又把变频器的设计容量降为q=Q/2n,降低了变频器的工程预算价格,提高了整个给水系统的性能价格比。
3、结论
本文提出了水泵组合优化变频调速给水方案。
它既保留了变频调速方案的优点:
全流量范围内可以实现高精度的恒压给水,又利用水泵组合技术大大降低了变频器选用容量,提高了系统的性能价格比。
变频调速技术在水泵控制系统中的应用
介绍了水泵变频调速控制系统的节能原理、系统结构及节能效果。
系统运行结果表明:
水泵采用变频调速控制,节能效果显著,具有明显的经济效益和社会效益。
变频调速(VariableVelocityVariableFrequency节能技术是一项集现代先进电力电子技术和计算机技术于一体的高效节能技术。
自80年代世界各国将其投入工业应用以来,它显示出了强劲的竞争力,其应用领域也在迅速扩展。
现在凡是可变转速的拖动电机,只要采用该项技术就能取得非常显著的节能效果。
国家科委十分重视这一技术的推广工作,已在1995年将其列入国家级重点推广的科技成果项目。
随着我国工业生产的迅速发展,电力工业虽然有了长足进步,但能源的浪费却是相当惊人的。
据有关资料报导,我国风机、水泵、空气压缩机总量约4200万台,装机容量约1.1亿千瓦。
但系统实际运行效率仅为30~40%,其损耗电能占总发电量的38%以上。
这是由于许多风机、水泵的拖动电机处于恒速运转状态,而生产中的风、水流量要求处于变工况运行;还有许多企业在进行系统设计时,容量选择得较大,系统匹配不合理,往往是“大马拉小车”,造成大量的能源浪费。
因此,搞好风机、水泵的节能工作,对国民经济的发展具有重要意义。
1水泵调速运行的节能原理
水泵调速时的全扬程特性(H-Q)曲线。
用阀门控制时,当流量要求从Q减小到Q1,必须关小阀门。
这时阀门的磨擦阻力变大,阻力曲线从R移到R′,扬程则从H0上升到H1,运行工况点从A点移到B点。
用调速控制时,当流量要求从Q减小到Q1,由于阻力曲线R不变,泵的特性取决于转速。
如果把速度从N100降到N80,运行工况点则从A点移到C点,扬程从H0下降到H2。
根据离心泵的特性曲线公式:
P=QHr/102η1
式中:
P——水泵使用工况轴功率(kw
Q——使用工况点的水压或流量(m3/s ;
H——使用工况点的扬程(m);
r——输出介质单位体积重量(kg/m3 ;
η——使用工况点的泵效率(%)。
可求出运行在B点泵的轴功率和C点泵的轴功率分别为:
PB=Q1H1r/102η2
PC=Q1H2r/102η3
两者之差为:
Δρ=PB-PC=Q1H1-H2 r/102η4
也就是说,用阀门控制流量时,有ΔP功率被损耗浪费掉了,且随着阀门不断关小,这个损耗还要增加。
而用转速控制时,根据流量Q、扬程H、功率P和转速N之间的关系,有:
由(5)式可知,流量Q与转速N的一次方成正比;扬程H与转速N的平方成正比;轴功率P与转速N的立方成正比,即功率与转速成3次方的关系下降。
如果不是用关小阀门的方法,而是把电机转速降下来,那么在转运同样流量的情况下,原来消耗在阀门的功率就可以全避免,从而获得图1中BC区域大小的节能效果,这就是水泵调速节能原理。
变频调速的基本原理是根据交流电动机工作原理中的转速关系:
N=60f1-s /p6
式中:
f——水泵电机的电源频率(Hz);
p——电机的极对数;
由(6)式可知,均匀改变电动机定子绕组的电源频率f,就可以平滑地改变电动机的同步转速。
电动机转速变慢,轴功率就相应减少,电动机输入功率也随之减少。
这就是水泵变频调速的节能作用。
2水泵变频调速控制系统的设计
变频调速器的控制可以是自动的,也可以是手动的。
目前,国内在水泵控制系统中使用变频调速技术,大部分是在开环状态下,即人为地根据工艺或外界条件的变化来改变变频器的频率值,以达到调速目的。
本水泵变频调速控制系统设计,根据工厂生产工艺上所需冷却水供水要求,考虑若干方面的因素,采用闭环调速控制。
本水泵变频调速控制系统原理框图如图2所示。
系统主要由四部分组成:
(1)控制对象:
电机功率100kw,额定电流183A;水泵配用功率100kw,流量792m/h,轴功率80.3kw,扬程32.3m。
(2)变频调速器:
选用FRN110/P9S-4,适配通用电动机功率110kw,额定容量160kVA,额定电流210A。
一般用于连续运转的混合的变频器容量选择的基本方法是:
变频器额定输出电流大于1.1倍电动机的额定电流。
(3)压力测量变送器(PT):
选用DLK100-OA/0-1Mpa。
用于控制水管出口压力,并将压力信号变换为4~20mA的标准电信号,再输入调节器。
(4)调节器(PID):
选用WP~D905,输入信号4~20mA,输出为PID控制信号4~20mA。
系统的控制过程为:
由压力测量变送器将水管出口压力测出,并转换成与之相对应的4~20mA标准电信号,送到调节器与工艺所需的控制指标进行比较,得出偏差。
其偏差值由调节器按预先规定的调节规律进行运算得出调节信号,该信号直接送到变频调速器,从而使变频器将输入为380V/50Hz的交流电变成输出为0~380V/0~400Hz连续可调电压与频率的交流电,直接供给水泵电机。
3运行效果分析
水泵电机装上变频调速器后,节能效果非常显著,经过实测,比未装变频器节约53%左右的电能,而且生产工艺稳定。
采用变频调速器前后实测的有关数据如表1、表2所示。
从表中数据对比结果分析可知:
(1)节能效果非常显著,采用变频调速技术后,提高了电机的功率因数,减少了无功功率消耗。
月平均节约电能31918kw.h,月平均节电率为53%,按目前工业电价0.67元/kw.h计,每月可以产生直接经济效益2万余元,具有明显的经济效益。
(2)采用变频调速技术后,电机定子电流下降64%,电源频率下降40%,水泵出水压力降低57%。
由于电机水泵的转速普遍下降,电机水泵运行状况明显改善,延长了设备的使用寿命,降低了设备的维修费用。
同时,由于变频器启动和调速平稳,减少了对电网的冲击。
(3)采用变频调速技术后,由于水泵出口阀全开,消除了阀门因节流而产生的噪音,改善了工人的工作环境。
同时,克服了平常因调节阀故障对生产带来的影响,具有显著的社会效益。
(4)系统采用闭环控制,参数超调波动范围小,偏差能及时进行控制。
变频器的加速和减速可根据工艺要求自动调节,控制精度高,能保证生产工艺稳定,提高了产品的质量和产量。
(5)由于变频调速器具有十分灵敏的故障检测、诊断、数字显示功能,提高了电机水泵运行的可靠性。
综上所述,变频调速技术用于水泵控制系统,具有调速性能好、节能效果显著、运行工艺安全可靠等优点。
在大力提倡节约能源的今天,推广使用这种集现代先进电力电子技术和计算机技术于一体的高科技节能装置,对于提高劳动生产率、降低能耗具有重大的现实意义。
可以说,变频调速技术是一项利国利民、有广泛应用前景的高新技术。