滑板滑块模型专题含答案.docx
《滑板滑块模型专题含答案.docx》由会员分享,可在线阅读,更多相关《滑板滑块模型专题含答案.docx(20页珍藏版)》请在冰豆网上搜索。
滑板滑块模型专题含答案
滑板滑块模型专题
(一)专题复习素材选择的理由
1、知识与技能、过程与方法、情感态度和价值观“三维目标“是新课程的“独创“,是新课程推进素质教育的根本体
现,是新课程标准异于原教学大纲的关键点,也是这次课程改革的精髓,表现了改革所承担着的“新期待”。
2、新课程高考物理试题给我们的启示:
引导教学重视物理过程的分析和学生综合解决问题能力的培养,强调对考生“运用所学知识分析问题、解决问题的能力“的考查,并且把渗透和关注学生的情感、态度、价值观纳入到了考査目标中。
命题坚持能力立总、问题立意。
主干、重点知识重点考。
3、在高中物理总复习中经常会遇到一个滑块在一个木板上的相对运动问题,我们称为“滑块+木板”模型问题。
由于两个物体间存在相互作用力,相互影响,其运动过程相对复杂,致使一些同学对此类问题感到迷惑。
此类问题曾是旧教材考试中热点问题,在我省实施的新课程高考中,由于高中物理3—3和3—5系选考内容,系统不受外力所遵循的动量守恒的情况在髙考必考内容中一般会回避,因此,这类问题近些年在我省有些被冷落、受忽视。
但千万记住有受外力情况下的相对运动依然是动力学的重要模型之一。
(二)专题复习素材的编制
为了提高训练的有效性,针对高考题目类型,选用题组进行强化训练,我们可以将训练试题分为“典例导学”、“变式训练"和“强化闯关“三部分。
“典例导学”和“变式训练“主要起方法引领的作用,适用于课堂教学,试题以典型性、层次梯度分明的基础题、中档题为主,训练解题思路,指导解题方法,规范解题过程,培养解题能力。
“强化闯关”供学生课外进行综合训练,一般采用各地质检和历届高考经典试题,试题综合性较强,苴主要目的是让学生把所掌握的解题方法和技巧应用于具体的问题情境中,不仅练习考点稳左的髙考题型,还练习可能的符合时代气息的创新题型、拓展题型,特别是那些能够很好地体现髙考改革最新精神和学科思想方法(如对图象、图表的理解应用和提取有效信息能力)的试题,让学生实战演练,提前进入实战状态,提早体验髙考,揭去髙考神秘的而纱,努力提高学生娴熟的技能技巧和敏捷的思维方式,使学生树立高考必胜的信心。
多角度、多层而剖析重点难点,通过题组辐射形成点带线,线连网,对考点要求有更深层次的理解与把握。
下面试列举本专题复习中编制的三部分题型示例以供参考:
1、动力学问题
【例1】如图,A是小木块,B是木板,A和B都静止在地而上。
A在B的右端,从某一时刻起,B受到一个水平向右的恒力F作用。
AB之间的摩擦因数为,B与地而间的摩擦因数为,板的长度乙假设最大静摩擦力几亦和滑动摩擦力相等,试分析A、B各种可能的运动情况及佔间、B与地而间的摩擦力。
in
【思路点拨】本题涉及两个临界问题:
一、B是否相对地面滑动,这里先要弄淸只有B相对地而滑动,B与A之间才有相对运动趋势(或相对运动),B与A之间才存在摩擦。
所以,B是否相对地面滑动的临界条件:
F=Amax=^2(m+〃?
2)g:
二、A是否相对B滑动,这里先需要明确A是靠B对它的摩擦力来带动的。
由题设知最大静摩擦力和滑动摩擦力相等,A受到的摩擦力fA/,“g,因而A的加速度心<“需。
人、B间滑动
与否的临界条件为A、B的加速度相等,即aA=aB,亦即[F-g-(m}+m2)g\/m2=«
【变式训练1】如图,A是小木块,B是木板,A和B都静止在地而上。
A在B的左端,从某一时刻起,A受到一个水平向右的恒力F作用开。
AB之间的摩擦因数为,B与地而间的摩擦因数为,板的长度乙假设最大静摩擦力和滑动摩擦力相等,试分析A、B各种可能的运动情况及AB间、B与地而间的摩擦力。
【例2】如图所示,质量M=4kg的木板长L=1.4m,静I匕在光滑的水平地而上,英水平顶而右端静巻一个质量z»=lkg的小滑块(可视为质点),小滑块与木板间的动摩擦因数“=0.4。
今用水平力民28N向右拉木板,使滑块能从木板上掉下来,求此力作用的最短时间。
(gTOm/s?
)
【思路点拨】与例1相比较,本题可以看成是例1中的一种特殊情况:
即“2=0,“刊,F»(m,+/M2)g的情形,只要力F作用在长木板上足够长时间(存在最小值)后撤去,小滑块必左能从长木板右端滑离。
可以用动力学观点(牛顿运动泄律和运动学公式)求解,也可以用动量能虽观点求解。
【变式训练2】如图所示,质量M=10kg的木板长L=lm,静止在光滑的水平地而上,其水平顶而左端静置一个质M/«=4kg的小滑块(可视为质点),小滑块与木板间的动摩擦因数“=0.25o今用水平力F向右拉滑块,使滑块能在2s内移到木板右端,则此力至少应为多大?
(g=10nVs2)
【例3】如图甲所示,木板A、B叠放在水平地面上,它们的右端相平,木板B长lm,质量为加,木板A长2m,质虽为2叽已知B与A之间的动摩擦因数是A与地面间动摩擦因数的4倍。
现使木板A突然获得一水平向右的初速度巾,最后A、B左端相平,形成图乙所示的状态停止在地而上,全过程历时2s,求切的大小。
(g=10ni/s2)
<■
La
【思路点拨】本题也是一道多过程的相对运动问题。
采用分解法分析复杂的物理过程,对各物体正确受力分析,画好运动示意图,建立淸晰的物理情景,并从几何关系寻找物体之间的相互联系,甚至辅以—f图像,仍是解决本题的重要手段。
与例2相似,可以用动力学观点(牛顿运动泄律和运动学公式)求解,也可以用动量能量观点求解。
【变式训练3】如图,质虽为也木块A(可视为质点)以一泄的初速度滑上原来静止在地而上的质量为加2的木板AB之间的动摩擦因数为,B与地而间的动摩擦因数为,板的长度厶试分析A、B可能的运动情况。
2、能量问题:
功是能量转化的量度。
不同的力做的功量度的是不同形式的能量转化。
本专题涉及的功能关系主要有:
(1)所有外力做的总功等于物体的动能增量即动能定理,表达式为We=Z\Ek«
(2)重力做功的特点是与物体的移动路径无关,只取决于物体始末位置的髙度差,即力:
重力做的功量度的是重力势能的变化或弹性力(遵循胡克立律的弹力)做的功量度的是弹性势能的变化,表达式为Wg=-AEp或Wl—4Ep。
可见,(3)只有重力做功时,一立是物体的动能和重力势能之间相互转化,但系统机械能的总量保持不变;同理,只有弹性力做功时,一定是物体的动能和弹性势能之间相互转化,但系统机械能的总疑也保持不变。
所以,重力或弹性力做功并不会改变系统的机械能。
换句话说,除重力和弹性力以外的其他力不做功或做的功代数和为零,系统的机械能总量保持不变,这就是机械能守恒立律。
(4)除重力和弹性力以外的其他力做的功量度的是系统的机械能的变化,表达式为W^AE.(5)一个静摩擦力或一个滑动摩擦力均可以做正功、不做功和做负功(请同学们自行举例说明,下同),且它们所做的功与移动的路径有关。
但一对相互作用的静摩擦力做功的代数和总为零,因为作用力与反作用力总是同时存在、等大反向,而且静摩擦力总是发生在相对静止的两物体接触而之间,要么两物体(对地)都静止,这一对相互作用的静摩擦力都不做功,总功为零;要么两物体(对地)在摩擦力的方向上有相同的
(分)位移,这一对相互作用的静摩擦力英中一个做正功,另一个必做等值的负功,总功也为零。
所以,静摩擦力做功的结果只能使机械能在相互作用的两物体之间发生传递,但不会改变系统的机械能总呈:
。
而一对相互作用的滑动摩擦力做功的代数和总为负值,共有三种可能情况,第一种可能是一个滑动摩擦力不做功,它的反作用力却做负功;第二种可能是一个滑动摩擦力做负功,它的反作用力也做负功;第三种可能是相对滑动的两个物体
(对地)朝同一个方向运动,一个滑动摩擦力对落后者做正功,它的反作用力对超前者做更多的负功。
所以,滑动摩擦力做功的结果总是要使相互作用的两物体组成的系统机械能总量减少,一对相互作用的滑动摩擦力做功的代数和的绝对值量度的就是因摩擦所产生的内能,即Q=仏AS,式中4S表示物体间相对运动的路程。
不过,无论是什么力做功,是哪些形式的能量在相互转化,机械能是否守恒,各种形式的能量总和不变,这就是能的转化和守恒泄律。
【例4】如图所示,质量为/n=lkg的滑块(可视为质点)放在质量为M=2kg的长木板左端,木板放在粗糙水平而上,滑块与木板之间的动摩擦因数为“尸0.1,木板与水平而之间的动摩擦因数为坨=0.2,木板长为厶=150cm,开始时两者都处于静止状态。
(1)现用水平向左的恒力F拉木板的左端,要使木板从小滑块下而抽岀,F必须满足什么条件?
(2)若民10N,则从开始到刚好把木板抽出的过程中,摩擦力对滑块做了多少功?
F对木板做了多少功?
讪!
川惟用伽国川朋㈱“删曲川册If删用册仙曲
【思路点拨】
(1)如果有拉力F作用将消耗的其他形式的能量转化为系统的动能和克服系统的摩擦力做功产生热量,即W^JEk+Q,Q=f^AS
(2)如果没有拉力F作用,滑块或木板的初动能转换为克服系统的摩擦力做功产生的热量,最终将停下来。
W—EkQ=f^AS
【变式训练4】如图所示,质量“ulkg的小物块放在一质量为M=4kg的足够长的木板右端,物块与木板间的动摩擦因数“=0.2,木板与水平面间的摩擦不计。
物块用劲度系数肛25N/m的弹簧拴住,弹簧的另一端固泄。
开始时整个装置静I匕,弹簧处于原长状态。
现对木板施以12N的水平向右恒力(最大静摩擦力可认为等于滑动摩擦力,^=10m/s2)。
求:
(1)开始施力的瞬间小物块的加速度:
(2)物块达到最大速度时离出发点多远?
(3)若弹簧第一次拉伸最长时木板的速度为1.5nVs,则从开始运动到弹簧第一次达到最长损失的机械能是多少?
强化闯关
1•如图所示,一足够长的木板静止在光滑水平而上,一物块静止在木板上,木板和物块间有摩擦。
现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为()
A.物块先向左运动,再向右运动
B•物块向右运动,速度逐渐增大,直到做匀速运动
C.木板向右运动,速度逐渐变小,直到做匀速运动
D.木板和物块的速度都逐渐变小,直到为零
2.如图,质量为也木块A(可视为质点)和质量为川2的木板B都静止在地而上,A在B的右端。
从某一时刻起,
B受到一个水平向右的瞬间打击力而获得了一个向右运动的初速度。
AB之间的摩擦因数为,B与地而间的摩擦因数为,板的长度乙试分析A、B可能的运动情况。
3.如图所示,质疑M=8kg的小车放在水平光滑的平而上,在小车左端加一水平恒力F,F=8N,当小车向右运动的速度达到1.5m/s时,在小车前端轻轻地放上一个大小不计,质量为m=2kg的小物块,物块与小车间的动摩擦因数“=02小车足够长.求从小物块放上小车开始,经过r=1.5s小物块通过的位移大小为多少?
(取g=lOni/s2).
4.(2004全国卷【)一小圆盘静止在桌布上,位于一方桌的水平桌而中央。
桌布的一边与桌的AB边重合,如图。
已知盘与桌布间的动摩擦因数为M,盘与桌而间的动摩擦因数为“2。
现突然以恒泄的加速度“将桌布抽离桌而,加速度的方向水平且垂直于AB边。
若圆盘最后未从桌而掉下,则加速度"满足的条件是什么?
(以g表示重力加速度)
5.如图为某生产流水线工作原理示意图。
足够长的工作平台上有一小孔A,—泄长度的操作板(厚度可忽略不II)静止于小孔的左侧,某时刻开始,零件(可视为质点)被无初速度地放上操作板中点,同时操作板在电动机带动下向右做匀加速直线运动直至运动到A孔的右侧(忽略小孔对操作板运动的影响),最终零件运动到A孔时速度恰好为零,并由A孔下落进入下一道工序。
已知零件与操作板间的动摩擦因素"=0.05,与工作台间的动摩擦因素“2=°・025,操作板与工作台间的动摩擦因素“3=°・3。
试问:
(1)电动机对操作板所施加的力是恒力还是变力(只要回答是“变力'域“恒力"即可?
)
(2)操作板做匀加速直线运动的加速度a的大小为多少?
(3)若操作板长L=2m,质量M=3kg,零件质量m=0・5kg,重力加速度取g=10m/s2,则操作板从A孔左侧完全运动到右侧过程中,电动机至少做多少功?
工件台A
6.(2010福建卷妆口图所示,物体A放在足够长的木板B上,木板B静置于水平而。
T=O时,电动机通过水平细绳以恒力F拉木板B,使它做初速度为零、加速度^=1.0m/s2的匀加速直线运动。
已知A的质量心和B的质量加均为2.0kg,A、B之间的动摩擦因数“尸0.05,B与水平而之间的动摩擦因数坨=0」,最大静摩擦力与滑动摩擦力视为相等,重力加速度g取lOnVs%求:
(1)物体A刚运动时的加速度小:
(2)ul.Os时,电动机的输出功率P;(3)若=1.0s时,将电动机的输岀功率立即调整为P=5W,并在以后的运动过程中始终保持这一功率不变,=3.8s时物体A的速度为1.2m/s。
则在匸1.0s到匸3.8s这段时间内木板B的位移为多少?
电.幼机
7.图1中,质量为加的物块叠放在质量为力”的足够长的木板上方右侧,木板放在光滑的水平地而上,物块与木板之间的动摩擦因数为"=0.2。
在木板上施加一水平向右的拉力F,在0〜3s内F的变化如图2所示,图中F以吨为单位,重力加速度^=10nVs2.整个系统开始时静止。
(1)求Is、1.5s、2s、3s末木板的速度以及2s、3s末物块的速度;
(2)在同一坐标系中画出0〜3s内木板和物块的I图象,据此求0〜3$内物块相对于木板滑过的距离。
Q1152J图2
8.如图所示,绝缘长方体B置于水平而上,两端固左一对平行带电极板,极扳间形成匀强电场E,长方体B的上表而光滑,下表而与水平面的动摩擦因数“=0.05(设最大静摩擦力与滑动摩擦力相同),B与极板的总质量A»B=1.0kg.带正电的小滑块A质M/»A=0.6kg,英受到的电场力大小F=1.2N.假设A所带的电量不影响极板间的电场分布.=0时刻,小滑块A从B表而上的"点以相对地而的速度vA=1.6nVs向左运动,同时,B(连同极板)以相对地而的速度PB=0.40nVs向右运动•问(g取lOnVs2)
■+
(DA和B刚开始运动时的加速度大小分别为多少?
(2)若A最远能到达点,“、b的距离厶应为多少?
从=0时刻到A运动到b点时,摩擦力对B做的功为多少?
【归纳总结】本专题涉及的基本问题:
判断滑块与木板间是否相对运动、能否分离、离开速度大小、对地位移、
摩擦生热等等;基本道具:
水平而(光滑或粗糙)、木板和滑块(分有无初速度或水平方向受不受外力几种情形);基本方法和思路:
采用分解法分析复杂的物理过程,降低难度,帮助理解。
分析各阶段物体的受力情况,明确谁带谁、靠什么摩擦来带、是否带动、是否打滑,并确定兔物体的运动性质(由合外力和初速度共同决左,即动力学观点);画好受力分析、运动示意图,建立淸晰的物理情景,并从几何关系寻找物体之间的相互联系,甚至辅以I—/图像,都是解决此类问题的重要手段。
也可以结合动疑能量观点求解。
整体法与隔离法相结合,利用接触面间的静摩擦力存在最大值(近似等于滑动摩擦力)这个临界条件来分析判泄是否出现相对滑动:
然后利用动力学规律和能疑观点求出相关的待求量。
(三)素材应用效果及启示
1、【效果】本专题复习传承了第一轮复习的精髓,较准确地反映了学生发展、社会发展和学科发展对高考的具体要求。
遵循培养学生的创新精神和实践能力,进一步提髙他们的科学素养的原则,以常见物理模型为载体,抓住知识的纵横联系,加深对双基知识的理解,提髙解题能力:
还可以将整个模型置于电磁场中,溶入电磁场的基本知识和规律,形成知识网络,提高学科内综合的能力:
通过本专题复习,突出主干知识,使掌握的知识得以延伸和拓展;通过专项训练强化思维的缜密性和解题的规范性,带给学生的不仅仅是方法、思想、知识、美感,最重要的是先进的理念与超前的意识,对高考脉动的准确把握,对教改方向的正确领悟。
2、【启示】划分专题的方式不仅可以:
第一,按教材内容设讣专题。
专题设计要尽量精简,突出主干知识,渗透学科的基本思想和方法。
各部分知识间互相交错,形成有机的知识体系。
纵横结合,互相联系。
第二,按试题类型设计专题。
选择题、实验题、材料题、计算综合题等,说明各类题型特点,进行解题方法指导。
第三,按错误情况设计专题:
知识错误和缺漏:
审题错误,解题方法不当,表述不当,解题格式不够规范,等等。
第四,按常见的模型设计专题:
如物理学科中传送带传送问题、弹簧类问题、“滑块+木板“模型问题、带电粒子在电磁场中的运动问题、“棒+导轨"的电磁感应力电综合问题等等。
而以常见的模型设计专题,更能以物理模型为载体,抓住知识的纵横联系,形成知识网络,提高学科内综合能力。
滑板滑块模型专题参考答案
【例1】【分析与解答】综上分析可知,可能岀现以下三种情况:
1当O£FW“2(如+皿2)g时,A、B均静止不动,AB之间摩擦力为兀=0:
2当“2(殆+加2)gF—“,(〃?
]+加Jg
Cl===——,0m}+m2
AB之间静摩擦力大小为人=叫=虫1,0<九却”斷
m}+
3当F>g+,"2)(仙+加2)g时,AB之间岀现相对运动,AB之间滑动摩擦力大小为心叫。
对A有:
得"A=“lg
对B有:
F_“2(加1+〃?
2)gr1加lg=,"2"B得Qf)=~~"""〃")*_"巴、•>“A=“]g
m2
可见,欲使B从A下方抽岀来,加在B上的水平恒力最小值应为(阳化)(“+加2)炸在满足这个条件的前提下,设A在B上滑动的时间是r,如图所示,它们的位fSI杀是Sr—S.严ZJ!
卩。
才门一心尸门二厶,由此可以计算出时间山
II
」厂
E
[_
【变式训练1】【思路点拨】本题虽然也涉及两个临界问题:
一、B是否相对地而滑动:
二、A是否相对B滑动。
但这里首先需要明确B是靠A对它的摩擦力来带动的。
由题设知最大静摩擦力和滑动摩擦力相等,只要
""1前2(加1+W12)g,无论F多大,A是否相对B滑动,B均相对地面静止不动。
换句话说,只有“
(川|+加2)g时,A才有可能把B带动。
所以,B是否相对地面滑动的临界条件是:
F=“””]g=“20"1+加2)g:
而A、B间滑动与否的临界条件为:
心=如,即(F-““g)/“=[“"]£一“2("+〃72)g】/〃72。
【解答】综上分析,本题可能出现五种情况:
①当“加日2(WJ1+/H2)g时,无论F多大,B均相对地而静止不动。
I•如果0II•如果则A在B上做匀加速运动,加速度为,AB之间滑动摩擦力大小等于B地之
间静摩擦力大小九=九=“1加炉
②当(mi+mz)g时,A、B受力如图所不
【•如果0=F;
II•如果“2(,小+加2)gVFw型二也如皿£,A.B—起向右做匀加速直线运动,共同加速度为
■
0°/〃心山"+〃必,AB之间静摩擦力大小为伽+牝)計"m}+m2m2
m2F+jLi2mSm}+m2)g
=$]〃】]£:
m}+m2
B地之间滑动摩擦力大小fB=/^2(Z+加2)g;
[[[如果F>~“.AB之间岀现相对运动,即最常见的%、B—起滑,速度不一样",A最
终将会从B上滑落下来。
AB之间滑动摩擦力大小为/二B地之间滑动摩擦力大小血二坨(加1+加2)g:
可见,欲使A能从B上方拉岀来,加在A上的水平恒力最小值几诙应为:
:
I1(mi+Hi2)g时.几加=“】〃?
炉由at212=L可得A在B上滑动的时间t°
当“"ig>“2gl忖,Fmin
=(“-“2)f(f+®)g,设人在j?
上滑动的时间是人如图所示,它们的tn.
位移艾系逼S.4—S〃=厶,即(l/2)«/=L,由此可以计算出时间人
【例2】【分析与解答】与例1相比较,本题可以看成是例1中的一种特殊情况:
即“2=0,心,F>/i(mi+m2)g的情形,只要力F作用在长木板上足够长时间(存在最小值)后撤去,小滑块必赵能从长木板右端滑离。
解法一:
动力学观点(牛顿运动泄律和运动学公式)
9/21
如上图所示,设力F作用时间口后撤去,最终小滑块恰好能从长木板右端滑离(也可以理解为恰好不能滑离)o所以,临界状态和条件是小滑块出现在长木板右端时,两者恰好达到相同速度讥
川川川川川川川川川川川I山川川川川川川川川川川
对m,全过程有:
“加g=〃g得m=“g①v2=2ci\S\
对M,撤去力F前,有:
F—“〃?
g=M"2③S2=a2t\2/2④撤去力F后,有:
^ng=Mai!
⑤(Mi),—宀加JSJ⑥
由几何关系,有:
s2+s2,-s]=l⑦联立以上各式可得:
ai=4m/s2>t/2=6ni/s2»ai/=1ni/s2>V2=6m/s>v=5.6m/s»Si=3・92m,S2=3m,S2‘=2・32m,h=Is
即此力作用的最短时间为Is
由以上解答结果,可作岀小滑块与长木板的\一,图像如图所示
解法二:
动量能量观点(动量沱理和动能宦理)
设力F作用时间“后撤去,再经时间"小滑块恰好能从长木板右端滑离
由动量泄理,在时间/]内
对M:
(F—ymg)ti=Mvi①
对m:
②
在时间t2内
对M:
~j^nigt2=Mv—Mv2③
对m:
j[imgt2=mv—mv]④
由动能定理,
对M,在时间/]内:
(F-艸g)SfM\£!
2⑤
在时间t2内:
一pmgS』=Mv1/!
—jWv22/2⑥
对m,全过程:
^jngS\=mv2/2⑦
由几何关系,有:
S2+S』一S\=L⑧
联立以上各式可得:
/1=1S即此力作用的最短时间为Is⑨
当然,本题还可以由动量定理和功能关系对系统全过程列方程如下:
Ft\=(m+M)”①
FSi~umgL=(m+M)v2/2②
而在时间"内,对M:
t\=Mv2③
(F—艸g)Si=Mvz2/2④
联立以上四式可得:
21S即此力作用的最短时间为1S
【小结】不论用哪一种方法求解,采用分解法分析复杂的物理过程,对各物体正确受力分析,画好运动示意图,建立清晰的物理情景,并从几何关系寻找物体之间的相互联系,甚至辅以r-r图像,都是解决此类问题的重要手段。
【变式训练2】【分析与解答】与例1相比较,本题可以看成是例2②中的一种特殊情况:
即T心,的情
形,只要作用在小滑块上力F达到一左值{存在最小值F”沪"〃肛"}且作用时间足够长,小滑块必泄m2
能从长木板左端移到右端。
而且力F越大,所需时间越短。
如图所示,设力F作用在小滑块上的时间为则&s
对m,有:
F—^Mig=mu]①S\=a\t2/2②
“加g=M“2③Si=由几何关系知:
S\—S2=L⑤
联立以上各式可得:
6/2=1Om/s2>a\>1.5m/s2>E16N
由以上解答结果,可作出小滑块与长木板的1一/图像如图所示(图中红线阴影