水表地原理与结构.docx
《水表地原理与结构.docx》由会员分享,可在线阅读,更多相关《水表地原理与结构.docx(38页珍藏版)》请在冰豆网上搜索。
水表地原理与结构
第二讲水表的结构和工作原理文字信息修改时间:
2007-10-2014:
13:
02信息来源:
添加人:
詹志杰[特约嘉宾]
第一节旋翼式水表
旋翼式水表是速度式水表的一种,是世界上用得最多的水表品种。
在国家标准中,速度式水表的定义为“安装在封闭管道中,由一个动力元件组成,并由水流速直接使其获得运动的一种水表”。
当水流通过水表时,驱动叶轮(旋翼或螺翼)旋转,而水流的流速与叶轮的转速成正比,因水流驱动叶轮处喷口的截面积为常数,故叶轮的转速与流量也成正比。
通过叶轮轴上的联动部件与计数机构相连接,使计数机构累积叶轮(旋翼或螺翼)的转数,从而记下通过水表的水量。
一、多流束水表
多流(束)水表:
水流通过水表时,有多束(股)水流从叶轮盒四周流人,驱动叶轮旋转。
这种水表的公称口径一般为15mm~150mm。
旋翼多流束式水表由表壳、中罩、表玻璃、密封垫圈、计量机构、计数机构和滤水网等组成。
水流冲击叶轮后,叶轮开始转动,所转圈数通过计数机构累计,记录显示通过水表的水量。
见图2-1和2-2。
图2-l 旋翼多流束水表的结构示意图
1- 接管;2-连接螺母;3-接管密封垫圈;4-铅封;5-铜丝;6-销子;7-O形密封垫圈;
8-叶轮计量机构;9-罩子;10-盖子;11-罩子衬垫;12-表壳;1-碗状滤丝网
图2—2 旋翼多流束水表的结构展开图
1-表盖;2-轴销;3-铜罩;4-罩子衬垫;5-表玻璃;6-O形密封圈;7-计数器;8-防磁环;9-中心齿轮,10-齿轮盒;11-垫圈;12-磁钢座;13-叶轮;14-叶轮盒;15-表壳;16-调节螺钉;17-调节螺钉垫片;18-调节塞;19-滤水网;20-接管垫片;21-接管;22-连接螺母
多流束水表的总体尺寸和连接方式见表2—1。
表2—Ⅱ 旋翼式多流束水表的总体尺寸和连接方式 mm
各部件的作用、所用材料如下:
1 表壳、中罩、表玻璃
表壳、中罩、表玻璃和密封垫圈一起组成一密封体,使表壳被测水不致渗漏至表外。
按国家标准规定,水表应能承受水压1.6MPa、持续15min和水压2.0MPa、持续1min的压力试验。
因此,表壳、中罩和表玻璃均应满足上述要求。
表壳材料一般采用灰铸铁(HTl50,见GB9436—1988)或铸造铅黄铜(ZcuZn40Pb2,见GBll76—1987)。
中罩材料一般采用铸造铅黄铜(ZcuZn40Pb2,见GB1176—1987)。
表玻璃应采用符合JB/T8480—1996的钢化玻璃。
2 计量机构
计量机构主要由齿轮盒、叶轮盒、整体叶轮、顶尖、调节板等组成,见图2—3。
计量机构是水表的“心脏”,它对水表的计量性能和耐用性起着关键的作用。
图2—3 旋翼式水表计量机构图
1-齿轮盒:
2-整体叶轮;3-叶轮盒;4-顶尖,5-调节板
(1)齿轮盒
计数器置于齿轮盒中,与齿轮盒上部的孔相配合。
齿轮盒下部有一凸台,与叶轮盒相配合。
齿轮盒在旋翼多流水表的机芯中,起着承下启上的作用。
为此,要求齿轮盒上部孔与下部凸台间应有良好的同轴度。
另外,齿轮盒外壁应有定位线或底部有定位键,以保证与叶轮盒配合时的定位要求,从而确保性能的稳定。
旋翼式水表的齿轮盒底部一般均有三条左右的固定筋,其主要作用是,当水表在大流量运转时,对叶轮旋转起阻尼作用,以改善水表在大流量区域的性能曲线。
因为当很小的流量通过水表时,其流速很低,水流的动能极小,不足以克服叶轮的惯性,故叶轮未转动。
待稍加大流速,叶轮虽转动,但不能准确计量,故最小流量以下的流量围水表呈偏慢的现象。
此后逐渐加大流速,水表向快的趋势发展,如果没有齿轮盒上的筋加以阻尼,则这种趋势将会持续下去,直至偏快10%~15%左右后(与有筋阻尼相比较),其性能曲线才会趋向平稳。
水流从叶轮盒进水孔流人后,一方面驱动叶轮旋转,另一方面水流本身呈螺旋形上升,并从叶轮盒出水孔排出。
在小流量时,因水流流速低,叶轮上平面与齿轮盒筋的间隙处的水流呈层流状态,水的粘性作用占主要地位,齿轮盒上的筋对叶轮转速无影响。
当流速大到一定程度时(一般为0.7m/s左右),间隙处水流从层流过渡到湍流,造成齿轮盒若干条筋的下方产生旋涡,使叶轮转速有所减低。
同时,因流速增大,在叶轮盒呈螺旋上升的水流,有一部分冲到齿轮盒筋反射回来,其方向却与叶轮旋转方向相反,故又使叶轮转速降低,使水表不致于出现没有齿轮盒筋那样快10%~15%后才使误差趋向平稳的现象。
变化示意见图2—4。
图2—4 齿轮筋对性能曲线的影响
齿轮盒底部装有三块可任意调节角度的调节板,其作用是通过调整调节板角度,以改变水流从调节板反射回来时反作用力的大小,即改变水流对叶轮转速阻尼力的大小,达到调节大流量区域误差的目的。
这种调节对小流量区域影响不大。
(2)叶轮盒
叶轮盒是计量机构中最关键的部件。
叶轮盒上部孔与齿轮盒下台肩相配合。
在叶轮盒低部中心一般有一螺孔,与顶尖相配合。
但有些水表不用螺纹配合,而采取过盈配合,将顶尖用力压人。
叶轮盒上部孔与顶尖应具有良好的同轴度。
在叶轮盒四周有两排斜孔,下排为进水孔,上排为出水孔,前者比后者对水表计量特性与压力损失的影响,更为至关重要。
进水孔一般在叶轮盒注塑时一次成型为矩形孔或长方孔。
进水孔可以均匀分布于叶轮盒的四周,也可在叶轮盒四周呈对称排列。
叶轮盒底部有若干条筋(一般为3条或6条),与齿轮盒上的筋作用相仿,主要是对水表在小流量区域运转时,使水流对叶轮转速产生阻尼。
因此,调整叶轮下平面与叶轮盒筋之间的间隙,将会对小流量区域的示值误差产生影响。
同时,当用水设备一旦关闭,水流不再流经水表时,由于筋的阻尼作用,能较快地克服叶轮的惯性,使其迅速停止转动,达到准确计量的目的。
对于部调节式水表而言,在叶轮盒底部有若干个调节孔,如LXS-15C~20C水表的叶轮盒底部,均布有三排、每排二只的调节孔。
调节孔有斜孔和直孔两种,如两者截面积相同,则后者比前者具有更大的调节功能,同时,在误差调节时,直孔比斜孔显得更敏感,在微量调节时比较难掌握。
(3)叶轮
无论是整体叶轮,或是组合叶轮,均要求叶轮上端的轴与下部的叶轮衬套孔(甚至玛瑙轴承窝)之间,应有良好的同轴度。
旋翼式水表所用的叶轮的形状为直板形。
叶轮受到水流冲击后旋转,与叶轮轴和轴上的中心齿轮同时转动。
对于大多数水表来说,在常用流量时,水表叶轮的转速,一般在750—900r/min。
所以希望叶轮具有较好的动平衡性能,以减少运动副之间的磨损,提高水表使用寿命。
(4)顶尖
顶尖安装在叶轮盒底部的中心,在叶轮轴的下部,用于支撑叶轮转动。
顶尖的最上尖部与叶轮轴的下端凹轴承直接形成点滑动接触,以便使叶轮转动更加灵敏。
除了顶尖头、轴与螺纹间应具有良好的同轴度外,顶尖头的材质应具有很高的耐磨性能,一般以特殊配方的硬质橡胶棒、聚甲醛等材料较佳。
值得注意的是,不能片面追求水表的灵敏度(始动流量值)而将顶尖头做成很尖。
否则,经短时间使用,顶尖头即会磨损,使水表出现大流量区域变快、最小流量时变慢的情况。
这是因为在上述两种流量下,叶轮旋转时呈下沉状态,即叶轮玛瑙轴承与顶尖头相接触,叶轮上平面与齿轮盒筋的间隙增大,水流对叶轮转速的阻尼减小,水表在大流量区域变快。
而小流量时,叶轮下平面与叶轮盒筋的间隙减小,水流对叶轮转速的阻尼增大。
同时,顶尖头的磨损,使叶轮与顶尖的磨擦阻力增大,在两者的共同作用下,即造成水表在最小流量时变慢和始动流量值增大。
如果顶尖头严重磨损,即使在大流量情况下,其磨擦阻力的影响会达到或超过水流对叶轮转速阻尼减小的影响,水表在大流量时的误差又会恢复到准确或变慢。
3 计数机构
计数机构常称为计数器,常见的形式有指针式、字轮式和指针字轮组合式。
(1)指针式计数机构
指针式计数机构一般由上夹板、下夹板、托板、齿轮级、标度盘、指针、圆指针及螺钉等组成。
a.上夹板、下夹板
夹板、下夹板和托板三者(有些产品将下夹板和托板合二为一)组成齿轮架,齿轮组被夹持在其中。
上、下夹板上相对应序号的轴孔投影,应分别重合。
齿轮在齿轮架中的上、下窜量应保持在0.6—0.8mm之间,若窜量过小,当上夹板一旦变形下凸时就会将齿轮上、下夹紧,齿轮组传动阻力就增大,水表的始动流量和最小流量下的误差就达不到要求。
上夹板下面中心有一凸台,其中有一孔与叶轮上端的光轴组成运动副。
上夹板中心孔与其外圆(与齿轮盒配合处)要求具有良好的同轴度。
b.齿轮
齿轮组起着变速和计数作用。
公称口径15~50mm水表的齿轮组,均由17只齿轮组成。
公称口径80~150mm旋翼式水表的齿轮组由18个齿轮组成。
图2-5为LXS-15C~25C水表的齿轮排列图。
如图所示,叶轮轴上的中心齿轮与第一位齿轮相啮合,齿轮组将叶轮转数记录下来,通过指针在度盘上指示出流经水表的水量。
齿轮组的前三位齿轮为变速齿轮,起变速作用。
自第三位(即第一位红针的)齿轮的主动轮(即小齿)起,直到末位齿轮止,起计数作用,称为计数齿轮,其相邻的两指针的齿轮间,其速比均为10:
1,由此构成连续十进位方式。
齿轮排列展开图
图2-5 LXS-15C~25C水表的齿轮排列图和标度盘
1-螺钉;2-圆指针;3-指针;4~10-齿轮;11-标度盘;12-上夹板;13-下夹板;14-托板;15-螺钉
不同规格的水表,在通过等量水体积的情况下,其叶轮与第一位指针的转数比是不同的。
变速齿轮的作用是通过其主、被动轮的齿数变化,取得不同的速成比而满足不同规格水表的需要,从而可最大限度地提高上、下夹板、度盘等零部件的通用化程度。
习惯上将水表第一位红指针转一圈与其叶轮的转数之比,称为该水表的减速比i。
这一减速比为主动轮齿数与被动轮齿数之比。
LXS-15C,20C,25C,40C的i值分别为1:
29.6,1:
22.5,1:
15.577,1:
35.38,LXS-80。
100,150的i值分别为1:
100.905、1:
61.1819、1:
24.716。
从这些减速比值,可计算出各种规格水表在各种流量下的叶轮转速。
例如,要计算LXS一15C水表在常用流量(1.5m3/h)下的叶轮每分钟转速时,可按下式计算:
同理,可得到LXS一20C,25C,40C规格的水表在常用流量下的叶轮转速为937.5,908.7和589.67r/rain。
c.标度盘
标度盘的分格,一要满足检定时的分辨率要求,二要满足在水表正常的使用年限水表的显示数不返回零。
1m3及其倍数的指针和度盘用黑色,1m3以下的用红色。
规程JJGl62—1985和标准GB/T778—1996规定:
水表最小分度值(水表标准称为检定
分格值)应满足检定时的准确度不低于o.5%(每一次读数允许有不超过1/2最小分度值的允许读数误差),以及最小流量检定所需时间不应超过1h30min;应能在不越过零的情况下记录下相当于在常用流量下工作至少1999h的以立方米表示的用水量体积。
说明:
国际建议OIMLR49一l:
2000(E) 中的表述为“检定标尺的分格值,应足够小以保证指示装置的分辨率误差不大于最小流量Ql下运行lh30min的实际体积的0.5%(对2级表)”,这样的表述更准确。
LXS-15C~25C水表的标度盘如图。
2—6所示。
在水表检定时,要注意最小分格值的读数,见图2—6所示。
水表最小位圆标度的主分格值为0.0001m‘(或称0.11),其间一分为二作为细分格,则成为检定分格或最小分度值0.00005m3。
根据人机工程学原理,为取得较快的读数,采取二步插法,即根据目测,将细分格再假想插入一条等分中线。
如果指针指向小于(或等于)细分格中的假想中线,则读取下限分格值,如图2—6(a)应读作0.00005m3,如果指针指向大于(或等于)细分格中的假想中线,则读取上限分格值,如图2—6(b)中应读为0.00010m3。
图2-6 水表标度盘读数
检定分格值、检定用水量、检定所需时间三者互为联系、互相牵制,在水表的检定分格值设计、检定用水量的确定及水表检定装置的量器量限设计时都需考虑。
检定分格值应符合表2-2的要求。
水表的十进位数应符合表2-3的要求。
表2—2 水表的检定分格值
最小流量qmin/(m3/h)
检定分格的最大值/m3
0.0226≤qmin<0.0666
0.0002
0.0666≤qmin<0.
0.0005
0.≤qmin<0.266
0.001
0.226≤qmin<0.666
0.002
0.666≤qmin<1.330
0.005
1.330≤qmin<2.660
0.01
2.660≤qmin<6.660
0.02
6.660≤qmin<13.300
0.05
13.300≤qmin<-26.600
0.1
26.600≤qmin<66.600
0.2
66.600≤qmin<
0.5
表2-3水表的十进位数
(2)指针字轮组合式、字轮式
指针字轮组合式计数机构具有读数清晰、抄读方便等优点,越来越多的水表包括E型表、干式水表和液封式水表普遍采用这样的计数机构。
国的指针字轮组合式计数机构一般由3位或4位红指针与5位字轮组成,其排列示意图见图2—7。
对于公称口径15~25mm的水表,其第一位字轮的分格值为0.1m3,数字颜色为红色,其后等于或大于1m3的四个字轮上的数字均为黑色。
有些企业生产的这种计数机构,将字轮组置于字轮匣中,字轮匣的四周和底部与被测水隔开,仅在上夹板上开有供读数的狭长的5个“窗孔”,避免字轮被水中的一些杂质卡死或影响抄读的缺陷。
字轮的进位是在相邻低位数字轮上的数字自9转至0时完成的。
字轮式计数机构除了指示始动流量用星形指针外,其余读数位均用字轮。
图2—7 指针字轮组合式计数机构排列图
1-标度盘;2-圆指针;3-(红色);4~11-齿轮;12-蜗杆齿轮;13-标牌;14-上夹板;
15-字轮轴;16-F夹板;1-十牙轮;18-头位字轮;19-中间字轮;20-四八牙轮;21-牙轮轴
4滤水网
国自来水质近年来明显提高,但部分管线难免还存在锈垢、麻丝、铁屑及砂砾等杂质,这些杂质随着水流最终来到水表进口处。
为防止杂质进入水表机芯,造成水表故障,故在水表进口端均装有滤水网。
常用的为碗状滤水网,安置在叶轮盒的外面,这种结构容垢能力较大,且即使堵塞一部分网孔后对计量能力也影响较小;另一种为筒状滤水网,安置于水表表壳的进水一方,效果比碗状滤水网差。
二、单流束水表
单流(束)水表:
水流通过水表时,仅有一束(股)水流驱动叶轮旋转。
单流水表的公称口径一般为15(或者13)~25mm,体积较小,误差调节装置放置在外部。
旋翼单流湿式水表主要由表壳、中罩、表玻璃、密封垫圈、叶轮、下顶尖、计数机构、调节板和滤水网等组成。
结构示意如图2—8。
图2-8 单流水表结构示意图
1-接管;2-连接螺母,3-密封圈,4-夹紧圈;5-压紧圈;6-计数器;7-防磁环;8-传动齿轮组件;9-盖;10-垫圈;11-O形密封圈;12-锁紧螺钉;13-螺母;14-铅封;15-铜丝;16-滤水网,17-齿轮盒组件;18-调节片;19-开槽盘头螺钉;20-顶尖;21-叶轮组件;22-表壳;23-齿轮盒盖
旋翼单流水表在所有水表品种中,属于结构最简单、体积最小、重量最轻、成本最低的一种。
旋翼单流水表主要零部件的要求与作用,大致与旋翼多流湿式水表相同。
以下为一些不同之处:
1 表壳
单流束水表与多流束水表相比,少了齿轮盒和叶轮盒,其中某些功能就由表壳承担。
如表壳上部孔与计数器相配合,取代了齿轮盒的部分功能。
表壳的进出水孔和其孔中心螺孔,取代了叶轮盒的功能。
因此,单流水表表壳的加工精度要求,远远高于多流水表。
如应具备较高精度的进、出水孔的孔径、粗糙度及其切线半径。
表壳上部台肩与中心螺孔应保持较高的同轴度。
如无高精度多工位的专用机床,很难达到这些要求和取得高的生产效率。
2 调节板
单流水表只有调式而无外调式,其误差调节是通过改变计数器下方的三块调节板的角度来达到的,其调节原理与LXS一80~150旋翼多流束水表中的上调节板相似。
3 滤水网
单流水表的滤水网是一片呈球面的薄片,其上有许多小孔。
滤水网置于表壳进口端,以阻拦水中杂质通过。
但受表壳进水端通径的限制,滤水网的孔的总面积难以达到设计要求的水表公称口径面积的1.5倍。
因此,当单流水表稍有水中的杂质堵塞网孔时,在同等流量条件下,通过滤水网并驱动叶轮旋转的水流速大于未堵前的水流速,从而使叶轮转速提高,造成水表变快。
所以,单流水表对水质和流场的要求较高。
4 下顶尖
单流束水表仅一股水流驱动叶轮旋转,所以当叶轮以较高速度旋转时,始终受到一个垂直于水流切线方向的推力,使顶尖造成单边磨损。
为此,要求下顶尖采用较耐磨的材料制造。
三、干式水表
干式水表因其计数机构与被测水隔绝,故不受水中悬浮杂质的影响,确保计数机构的正常工作和读数的清晰,同时也不会像湿式水表那样,因表外温差而造成玻璃下方起雾或凝结水珠等影响水表抄读的现象。
旋翼多流干式水表的误差调节装置一般为外调型式,其外形尺寸及部结构与同规格的湿式水表基本相似,许多零部件也能互相通用。
干式水表与湿式水表的最大区别在于计量机构。
见图2-9。
其叶轮与中心齿轮相分离,叶轮上端由磁性元件(磁环或柱状磁钢)与中心齿轮下端的磁性元件相耦合。
当水流推动叶轮旋转时,通过叶轮上端的磁性元件与中心齿轮下端的磁性元件相吸或相斥,驱动中心齿轮同步旋转,并由中心传动计数器记录流经水表的水量。
图2-9 干式水表计量机构
1-叶轮盒;2-叶轮组件;3-水表指示机构总成
如上所述,干式水表的计量机构与湿式水表有所不同。
1 干式水表的磁性元件
干式水表磁性材料常用的有铁氧体和钕铁硼,磁性元件的结构形状一般有环状磁钢、柱状磁钢和环状磁钢与“冂”形矽钢片。
2 干式水表的齿轮盒
干式水表的计数机构是依赖齿轮盒与被测水隔绝,所以齿轮盒底部及四周须能承受力2MPa压力试验而不变形。
为此,在设计干式水表时,除了在齿轮盒上、下底部增设了十余条加强筋外,往往在齿轮盒上底部和壁衬以金属的碗状衬,以防其受压变形。
齿轮盒上、下底部的中心处各有一轴孔,分别与中心齿轮轴与叶轮轴相配合。
为了尽量减小运动部件的磨擦阻力,提高始动流量值,一般在上轴孔底部镶有一粒凹面(或平面)宝石轴承。
干式水表的计数机构,除了靠齿轮盒四周和底部将其中被测水隔绝外,最好在齿轮盒上部也采取良好的密封措施,以防表外污水流入侵蚀计数机构。
四、立式水表
在安装空间狭小的场所,可以安装立式水表,实物图见附录C图C.3。
立式水表的部构造与一般旋翼式水表相同,不同之处是立式水表的入水口和出水口在水表的同侧,可以装在给水管的立柱上。
立式水表具有抄表方便、不用保护盒、节省安装费用等优点。
五、定量水表
在一些化工生产、玻璃生产、食品加工、建筑混凝土搅拌等过程中,需要定量供水,一种方法是在稳定流条件下控制供流时间来实现定量供水,另一种方法就是使用定量水表。
定量水表有电气控制和数控两种类型,其基本原理相同,其外形见附录C图C.12。
定量水表由带有电气控制部分的旋翼式水表(或水平螺翼式水表)、电磁阀及定量控制仪三部分组成。
数控定量水表的原理是,启动电磁阀后水流通过水表,使叶片感应出一系列的脉冲信号。
脉冲信号经放大、分频后与定值器所预置的流量相减,当减到零时,经过控制器关闭电磁阀,完成一次定量供水。
定量水表一般为工业用途,其口径在25mm以上。
定量水表的一次供水量根据水表的口径和定值器预置值而定,如公称口径25mm水表的一次供水量可以为15~50L,40mm水表的一次供水量可以为60~200L等。
因为流量围可以定点或较小,定量水表的一次供水量的误差可以控制在±1%。
六、同轴水表(单接口水表)
同轴水表又称单接口水表,其水流的进口与出口在同一个接口上,其接管是专用接管。
单接口水表是一种可用于多路共管管道输送供给系统的水表。
该产品采用专用接口,与多路共管的供水管组成一个管路系统,单一管路系统部采用多路扇形通道,适用于多层楼房用户(最多可达垂直单元8层、8个用户)的户外集中安装的“一户一表”,见图2—10。
图2-10 单接口水表与多路共管系统图
七、性能特点
1 误差特性
旋翼式水表的误差特性用水表的示值误差E与流量之间的关系来表示。
旋翼式水表的误差特性曲线见图2—11。
其特征为:
在小流量时,误差急剧偏负;随着流量增至分界流量附近,误差曲线快速向正向移动,并达到一个峰值;当流量继续增大时,误差曲线又向负方向偏移。
图2—ll 旋翼式水表误差特性图
旋翼式水表的计量等级一般只达到A级或B级,其对应的流量围和特性流量点可参看附录D。
2 压力损失
旋翼式水表的压力损失在其过载流量下应不超过0.1MPa。
不装过滤器的旋翼式水表的实际压力损失在(0.040~0.)MPa围。
3 耐压强度
旋翼式水表应能承受水压1.6MPa、持续15min和水压2.OMPa、持续lmin的压力试验。
4 使用寿命和计量性能变化趋势
水表的使用寿命与产品所采用的结构、材料密切相关,也受到使用场合的安装、水质好坏的影响。
实验室对使用寿命的试验情况不完全代表实际使用的场合。
一般说来,水表的外壳不易损坏,可长久使用,容易损坏或磨损的是部机芯。
水表的活动部件(叶轮、叶轮盒组件等)一般用工程塑料ABS材料制造,比较耐磨。
水表连续通水试验后比较容易损伤的是翼轮轴尖、翼轮轴齿轮和传动齿轮中的第一个齿轮。
在实验室中的试验说明,旋翼式水表在使用了相当于10年以上的用水量后,计量性能并无大的失准(可在土4%),整个误差特性曲线向下偏移,即在小流量、大流量下水表走字全部变慢。
但对实际用表的情况统计表明,民用小口径水表多年使用后的情况并没有那么理想,寿命也没有那么长,多数情况是多年使用后的水表在小流量下走慢,而在大流量下却变快。
据分析,主要原因是水中杂质堵塞滤网后形成的单边冲击叶轮等效果形成。
说明:
干式水表的使用寿命还受到制造企业所用的磁性材料和工艺的影响。
5 对介质、安装的要求
旋翼多流束水表对水质要求和流场要求相对不高,但使用时间久了可能对湿式水表的度盘读数清晰度会产生一些影响(干式水表和液封式水表不存在这个问题)。
旋翼单流束水表对水质要求和流场要求相对较高。
旋翼式水表对水表的流向、安装方位、读数度盘的朝向、表前表后的直管段长度均有要求,单流水表要求更严。
第二节 螺翼式水表
螺翼式水表又称伏特曼(Woltmann)水表,是速度式水表的一种,适合在大口径