点D作DF⊥BC于点F,连接DE,EF.
(1)求证:
AE=DF;
(2)四边形AEFD能够成为菱形吗?
如果能,求出相应的t值;如果不能,请说明理由;(3)当
t为何值时,△DEF为直角三角形?
请说明理由
解:
(1)在△DFC中,∠DFC=90°,∠C=30°,DC=4t,∴DF=2t,又∵AE=2t,∴AE=DF.
(2)能.理由如下:
∵AB⊥BC,DF⊥BC,∴AE∥DF.
又∵AE=DF,∴四边形AEFD为平行四边形.
当AE=AD时,四边形AEFD是菱形,即60-4t=2t.解得t=10s,
∴当t=10s时,四边形AEFD为菱形.
(3)①当∠DEF=90°时,由
(2)知EF∥AD,∴∠ADE=∠DEF=90°.∵∠A=60°,
∴∠AED=300.∴AD=t,又AD=60-4t,即60-4t=t,解得t=12s.
只供学习与交流
此文档仅供收集于网络,如有侵权请联系网站删除
②当∠EDF=90°时,四边形EBFD为矩形.在Rt△AED中,∠A=60°,则∠ADE=30°.
∴AD=2AE,即60-4t=4t,解得t=15/2s.
③若∠EFD=90°,则E与B重合,D与A重合,此种情况不存在.
综上所述,当t=15/2s或t=12s时,△DEF为直角三角形.
5、如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以1cm/s的
速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t.
(1)连接EF,
当EF经过AC边的中点D时,
(1)求证:
△ADE≌△CDF;:
(2)当t为______s时,四边形ACFE是菱形;
试题分析:
由题意得:
AE=t,CF=2t-6.
若四边形ACFE是菱形,则有CF=AE=AC=6,则t=2t-6
,解得t=6.
所以,当t=6时,四边形ACFE是平行四边形;
6、在菱形ABCD中,∠B=60°,点E在射线BC上运动,∠EAF=60°,点F在射线CD上
(1)
当点E在线段BC上时(如图1),
(1)求证:
EC+CF=AB;
(2)当点E在BC的延长线上时(如图
2),
线段EC、CF、AB有怎样的相等关系?
写出你的猜想,不需证明
(1)证明:
连接AC,如下图所示:
在菱形ABCD中,∠B=60°,∠EAF=60°,△ABC和△ACD为等边三角形,
∴,∴△AEC≌△AFD(ASA),∴EC+CF=DF+CF=CD=AB.
(2)解:
线段EC、CF、AB的关系为:
CF-CE=AB.
解析分析:
(1)已知∠B=60°,不难求出∠ABC,∠DAC的度数为60°,从而进一步求得△ABC,
△ACD为正三角形,从而证明△AEC≌△AFD,图1得出EC+CF=AB、
(2)图2先证明△ADF≌△ACE,DF=CE,CF=CD+DF=CE+BC,得出CF-CE=AB.
7、如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.
(1)求证:
四边形AMDN是平行四边形;
只供学习与交流
此文档仅供收集于网络,如有侵权请联系网站删除
(2)填空:
①当AM的值为______时,四边形AMDN是矩
形;
②当AM的值为______时,四边形AMDN是菱形.
(1)证明:
∵四边形ABCD是菱形,∴ND∥AM,∴∠NDE=∠MAE,∠DNE=∠AME,
又∵点E是AD边的中点,∴DE=AE,∴△NDE≌△MAE,∴ND=MA,
∴四边形AMDN是平行四边形;
(2)①当AM的值为1时,四边形AMDN是矩形.理由如下:
1
∵AM=1=AD,∴∠ADM=30°∵∠DAM=60°,∴∠AMD=90°,∴平行四边形AMDN是矩形;
2
②当AM的值为2时,四边形AMDN是菱形.理由如下:
∵AM=2,∴AM=AD=2,∴△AMD是等边三角形,∴AM=DM,∴平行四边形AMDN是菱形,
8、如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于
点E,交∠BCA的外角平分线于点F.
(1)探究:
线段OE与OF的数量关系并加以证明;
(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?
(3)当点O在边AC上运动时,四边形BCFE会是菱形吗?
若是,请证明,若不是,则说明理由.
解:
(1)OE=OF.理由如下:
∵CE是∠ACB的角平分线,∴∠ACE=∠BCE,
又∵MN∥BC,∴∠NEC=∠ECB,∴∠NEC=∠ACE,∴OE=OC,∵OF是∠BCA的外角平分线,∴∠OCF=∠FCD,又∵MN∥BC,∴∠OFC=∠ECD,∴∠OFC=∠COF,∴OF=OC,∴OE=OF;
(2)当点O运动到AC的中点,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.理由如下:
∵当点O运动到AC的中点时,AO=CO,又∵EO=FO,∴四边形AECF是平行四边形,
∵FO=CO,∴AO=CO=EO=FO,∴AO+CO=EO+FO,即AC=EF,∴四边形AECF是矩形.已知MN∥BC,当∠ACB=90°,则∠AOF=∠COE=∠COF=∠AOE=90°,∴AC⊥EF,
∴四边形AECF是正方形;
(3)不可能.理由如下:
如图,∵CE平分∠ACB,CF平分∠ACD,∴∠ECF=1∠ACB+1∠ACD=1(∠ACB+∠ACD)=90°,
222
若四边形BCFE是菱形,则BF⊥EC,
但在△GFC中,不可能存在两个角为90°,所以不存在其为菱形.
故答案为不可能.
9、如图,已知菱形ABCD中,∠ABC=60°,AB=8,过线段BD上的一个动点P(不与B、D重合)
只供学习与交流
此文档仅供收集于网络,如有侵权请联系网站删除
分别向直线AB、AD作垂线,垂足分别为E、F.
(1)BD的长是______;
(2)连接PC,当PE+PF+PC取得最小值时,此时PB的长是______
10、如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为______.
如图,取AB的中点E,连接OE、DE、OD,∵OD≤OE+DE,
∴当O、D、E三点共线时,点D到点O的距离最大,
1
此时,∵AB=2,BC=1,∴OE=AE=AB=1。
2
DE=,∴OD的最大值为:
。
故选A。
只供学习与交流
此文档仅供收集于网络,如有侵权请联系网站删除
11、如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中
点.
(1)求证:
四边形PMEN是平行四边形;
(2)请直接写出当AP为何值时,四边形PMEN是菱形;
(3)四边形PMEN有可能是矩形吗?
若有可能,求出AP的长;若不可能,请说明理由.
12、如图,在平行四边形ABCD中,对角线BD=12cm,AC=16cm,AC,BD相交于点O,若E,F是AC上两动点,分别从A,C两点以相同的速度向C、A运动,其速度为0.5cm/s。
(1)当E与F不重合时,四边形DEBF是平行四边形吗?
说明理由;
(2)点E,F在AC上运动过程中,以D、E、B、F为顶点的四边形是否可能为矩形?
如能,求出此时的运动时间t的值,如不能,请说明理由。
解:
(1)是。
理由:
在平行四边形ABCD中,则OD=OB,OA=OC,
∵A、C两点移动的速度相同,即AE=CF,∴OE=OF,∴四边形DEBF是平行四边形。
(2)当运动时间t=4或28时,以D、E、B、F为顶点的四边形是矩形。
只供学习与交流