强度断裂及断裂韧性.docx

上传人:b****5 文档编号:7399059 上传时间:2023-01-23 格式:DOCX 页数:36 大小:106.25KB
下载 相关 举报
强度断裂及断裂韧性.docx_第1页
第1页 / 共36页
强度断裂及断裂韧性.docx_第2页
第2页 / 共36页
强度断裂及断裂韧性.docx_第3页
第3页 / 共36页
强度断裂及断裂韧性.docx_第4页
第4页 / 共36页
强度断裂及断裂韧性.docx_第5页
第5页 / 共36页
点击查看更多>>
下载资源
资源描述

强度断裂及断裂韧性.docx

《强度断裂及断裂韧性.docx》由会员分享,可在线阅读,更多相关《强度断裂及断裂韧性.docx(36页珍藏版)》请在冰豆网上搜索。

强度断裂及断裂韧性.docx

强度断裂及断裂韧性

第十讲

4-1-5强度、断裂及断裂韧性

Strength,FractureandFractureToughnessofMaterials

Strength

stress(tensile,compressionandshear)flexural,torsionalandimpact

Fracture

BrittleFracture,

Theoreticalfracturestrength

DuctileFracturewithaplasticdeformation

TransitionofBrittleandDuctilty

FractureToughness

1.基本概念Concept

⑴强度Strength

材料抵抗形变和断裂的能力。

材料的内部应力分为:

拉伸、压缩、剪切

强度分为:

拉伸强度、压缩强度、剪切强度

加载特征分为:

弯曲、扭曲、冲击、疲劳

压缩时,未到破坏强度,产生屈曲而失去承载能力(断裂、屈服、

屈曲)

⑵断裂和韧性Fractureandtoughness

断裂是主要破坏形式,韧性是材料抵抗断裂的能力。

延性断裂(韧性):

明显塑性变形

脆性断裂(脆断):

突然

韧性又分断裂韧性和冲击韧性两大类。

断裂韧性

表征材料抵抗其内部裂纹扩展能力的性能指标;

冲击韧性

对材料在冋速冲击负荷卜韧性的度里。

—者间存在着某种内在联系。

实际应用中,材料的屈服和断裂是最值得引起注意的两个问题,

通常用拉应力下获得的应力-应变实验曲线了解材料受力后变形、屈服直

至断裂的全貌。

从而评价材料的弹性、塑性、韧性、强度

2.屈服强度Yieldstrength

Chapter7

断裂及强度的定义,

英文概念

应掌握

理解并掌握基本概念

Figure7.10

屈服强

度、断裂

强度概

念;为重

点掌握

Figure7.13

表4-3

表4-4

了解内容

3.断裂强度Fracturestrength

⑴抗张强度Tensilestrength

抗张强度亦称拉伸强度。

规定的温度、湿度和加载速度条件,标准试样上沿轴向施加拉伸力直到

试样被拉断为止,计算断裂前试样所承受的最大载荷Fmax与试样截面积之比。

金属一一关心抵抗塑性变形的屈服强度,而不是断裂强度。

压缩强度

向试样施加单向压缩载荷。

高分子材料的拉伸强度一般低于金属材料,但树脂基复合材料由于树脂

与纤维的共同作用拉伸强度高于钢等金属材料。

--尤其突出的是树脂基复合材料的比强度和比模量很高。

碳纤维增强环氧

树脂的比强度是钢的七倍,比模量比钢大三倍。

(2)抗弯强度Flexuralstrength

抗弯强度亦称挠曲强度,

2

匚t=1・5Fmax

弯曲试验的加载方式有两种三点弯曲

四点弯曲,可较好地反映材料全面的品质。

这种试验的特点有:

第一,适用于

A测定加工不方便的脆性材料,如铸铁、工具钢、硬质合金乃至陶瓷

材料的断裂强度和塑性。

B对于高分子材料,常用于筛选配方或控制产品质量。

第二,可较灵敏地反映材料的缺陷,以鉴别诸如渗钢、表面淬火等热处理零

件的质量。

一般而言,抗张强度大,则抗弯强度也大。

(3)抗冲强度Impactstrength

材料的抗冲强度是

A材料在高速冲击状态下的韧性或对断裂抵抗能力的量度。

B指某一标准试样在断裂时单位面积上所需要的能量,而不是通常所

指的“断裂应力”。

C其值与高速拉伸应力-应变曲线下的面积成正比。

D不是材料的基本参数,而是一定几何形状的试样在特定试验条件

下韧性的一个指标。

最重要的冲击实验仪是摆锤式试验仪,

图4-22

按照矩形试条固定的方法分成卡毕(Charpy)型

伊佐德(Izod)型原理:

摆锤损失的能量就是材料冲击强度(IS)的度量。

通常把抗试样冲强度引述为断裂能量/断裂面积,单位为KJ/m2。

冲击破坏是塑料构件一种常见的破坏形式。

表4-5

高分子材料的冲击韧性存在一定规律。

1拉伸时呈脆性高聚物,如聚苯乙烯、有机玻璃等,它们的冲击值小于

0.03KJ/m。

2既强又韧的高聚物、如聚碳酸酯等,冲击值一般都大于0.10KJ/m。

3可通过以下途径改善脆性高聚物的冲击强度:

增大材料的断裂伸长而增大匚一;曲线下的面积;

共混可将橡胶机械分散在脆性高聚物中,组成软、硬相间两相体系;

提高材料的抗张强度、增加c—;曲线下的面积,如将高强度纤维和

高聚物组成两相体系的复合材料。

在提高抗冲强度方面,聚合物共混具有特别重要的实际意义。

金属,

摆锤式冲击试验测定试样冲断的冲击吸收功,

试样夏比(Charpy)V型缺口

夏比U型缺口。

冲击韧性值,

冲击吸收功除以缺口底部横截面积得到的商值。

金属一一韧脆转变一一冲击韧性随温度的下降、显著降低。

冷脆转变曲线,韧脆转变温度。

(4)

了解

图4-23

抗扭强度Torsionalstrength

抗扭强度表征材料抵抗扭曲的能力。

扭转试验机上测定。

A在一定的扭矩M作用下,产生扭转角;:

B扭矩M和扭转角:

之间的关系曲线。

C材料的抗扭强度.b=Mb/W式4-23

Exampleproblem7.3

例题

Fromthetensilestress—trainbehaviorforthebrassspecimenshowninFigure7.12,determinethefollowing:

(a)Themodulusofelasticity.

(b)Theyieldstrengthatastrainoffsetof0.002.

(c)

例题类型的计算是

Themaximumloadthatcanbesustainedbyacylindricalspecimenhavinganoriginaldiameterof12.8mm

(d)Thechangeinlengthofaspecimenoriginally250

mmlongthatissubjectedtoatensilestressof345MPa.

OLUTION

(a)

Themodulusofelasticityistheslopeoftheelasticorinitiallinearportionofthestress-straincurve.

Inasmuchasthelinesegmentpassesthroughtheorigin,itisconvenienttotakeboth5and勺.aszero.If归isarbitrarilytakenas150MPa,then-willhaveavalueof0.0016.Therefore,

r,-(15U—0)MPamo厂八/nt?

inr.心

£0,0016-U=918GPa(*3-6*I炉P5】)

6

Figure7.13

whichisveryclosetothevalueof97GPa(1410psi)givenforbrassinTable7.1.

(b)The0.002strainoffsetlineisconstructedasshownintheinset;itsintersectionwiththestress-straincurveisatapproximately250MPa,whichistheyield

strengthofthebrass.

(c)

ThemaximumloadiscalculatedbyusingEquation7.1,inwhichistakentobethetensilestrength,fromFigure7.12,450MPa.SolvingforF,themaximumload,yields

(d)InEquation7.2,itisfirstnecessarytodeterminethestrainthatisproducedbyastressof345MPa.Thisisaccomplishedbylocatingthestresspointonthestress-straincurve,pointA,andreadingthecorrespondingstrainwhichisapproximately0.06.InasmuchasI0=250mm,wehave

A/=e/q=(0.06)(250mm)=15mtn(0.Gin.)

4.断裂Fracture

Chapter7,

and9

断裂是构件失效(Failure)的主要形式之一,比塑性失稳、磨

损和腐蚀等,更具有危险性。

Figure

7-13

Itisameasureofthedegreeofplasticdeformationthathasbeensustainedatfracture.Amaterialthatexperieneeverylittleornoplasticdeformationuponfractureistermedbrittle

断裂常根据断裂前是否发生明显的宏观塑性变形,或断裂前

是否明显地吸收能量,把断裂分成:

脆性断裂brittlefracture,

和韧性断裂(或延性断裂)。

按照断裂机制分类:

解离断裂、

沿晶断裂

微孔聚合型的延性断裂。

按裂纹的走向分,

穿晶断裂

沿晶断裂。

按裂纹的取向分,

正断,正断时断裂面与最大主应力方向垂直

切断。

切断时断裂面与最大切应力方向一致,而与最大主应力方向成45度角。

脆性断裂

危害大,

充分理解

⑴脆性断裂Brittlefracture

脆性断裂的宏观特征是

A断裂前无明显的塑性变形(永久变形),吸收的能量很少,

B裂纹的扩展速度往往很快,几近音速。

C脆性断裂无明显的征兆可寻,断裂是突然发生的。

D脆性断裂的宏观断口往往呈结晶状或颗粒状

常见的脆性断裂有

解理断裂、晶间断裂

A大多数情况下,解理断裂、晶间断裂是脆性断裂;个别情况下,它们也

可能是韧性断裂,即断裂前有一定量的塑性变形。

几种类型

应了解

B脆性断裂与解理断裂、晶间断裂并不是同义词,前者是指宏观状态,后者是指断裂的微观机制。

1解理断裂

解理断裂是

A拉应力作用,

B原子间结合键遭到破坏,

C严格地沿一定的结晶学平面(即所谓“理解面”)劈开。

解理面:

表面能最小的晶面,低指数晶面。

解理断裂

沿一族相互平行的的晶面(均为解理面)解理。

平行解理面之间形成解理

图4-24,

4-25

台阶,汇合形成河流状花样。

另一特征是舌状花样一一解理裂纹沿孪晶界扩展而留下的舌状凸台或凹坑

面心立方金属不出现解理断裂一一滑移系较多和塑性好

2准解理断裂

马氏体回火中细小的碳化物质点影响裂纹的产生和扩展。

有明显的撕裂棱,

河流花样不十分明显。

3晶间断裂

晶间断裂

图4-26

裂纹沿晶界扩展的一种脆性断裂。

裂纹扩展

沿着消耗能量最小,即原子结合力最弱的区域进行。

晶界不会开裂。

发生晶间断裂势必由于某种原因降低了晶界结合强度。

(2)理论断裂强度和脆断强度理论

1

难点

公式的推导理解

图4-27

理论断裂强度(Theoreticalfracturestrength)

正应力作用一一故称拉断。

根据原子键合的能量关系,估算理论解理强度。

具体推导

(4-1-24~30)

——E=102GPa,s=1J/m2,ao=310-1°m,m=18.3GPa,

其值大约为E/7。

如金属铁,E=200GPa,,s=2J/m2,ao=2.510-1°m,二m=40GMPa,

约为E/5。

脆性材料

用弯曲试验,以表面上的最大应力来评价实际解理强度。

约为E/1000,可见它要比理论解理强度(E/7)小得多。

因为实际材料中存在着缺陷。

高聚物的强度(断裂强度)。

理论强度

假定材料完全规整,

根据原子间和分子间的内聚力以及单位面积的分子链数目求得的。

聚乙烯理论拉伸强度为20~30GPa。

高度取向,实际拉伸强度最大值为1.2GPa,

未取向,实际强度比理论值小100倍以上。

了解并理解

②Griffith(格列菲斯理论)

解释玻璃、陶瓷等脆性材料的实际断裂强度和理论断裂强度之间的巨大差

异。

理论:

A脆性材料发生断裂所需的能量在材料中的分布是不均匀的;

B当名义应力还很低时,局部应力集中已经达到很高的数值,从而使裂纹

快速扩展,并导致脆性断裂。

C裂纹尖端局部区域的材料强度可以达到其理论强度值。

D倘若应力集中超过材料的理论强度值,则裂纹扩展,引起材料的断裂。

具体推导见(公式4-1-32~公式4-1-47)

df=[PE.Ys/(4a.ao)]1/2

1/2

dc=[2EYs/(na)]

需要强调:

Griffith理论的前提是材料中存在着裂纹,但不涉及裂纹的来源。

3脆性断裂的位错理论

Griffith理论基于实际晶体材料存在裂纹。

晶体原无裂纹,在应力作用下,材料发生解理断裂的的理论

位错理论。

著名的理论有:

Zener-Stroh位错塞积理论、

Cottrell位错反应理论

Smith碳化物开裂理论等等。

这些理论都解释了脆性裂纹的成核和长大问题。

例题:

EXAMPLEPROBLEM9.1

Arelativelylargeplateofaglassissubjectedtoatensilestressof40MPa.Ifthe

2

specificsurfaceenergyandmodulusofelasticityforthisglassare0.3J/mand69GPa,respectively,determinethemaximumlengthofasurfaceflawthatispossiblewithoutfracture.

SOLUTION

TosolvethisproblemitisnecessarytoemployEquation9.3.Rearrangementofthisexpressionsuchthataisthedependentvariable,andrealizingthat=40MPa,丫dS=0.3J/m,anE=69Gpaleadsto

I2环

吕2

_

(2)仍9X

=77(40X106N/in2)3

=8.2x10-6im=0.0082mm=8.2jum

4永久变形的影响

计算值显著低于实验值。

其原因是裂纹前沿扩展所需的永久变形功上。

dc=[2E

1/2

(ys+yp)/(na)]

公式的具体推导理解,但公式的应用是重点

Figure9.7

图4-29

英文书

Exampleproblem9.1

公式4-48,

49,理解

 

(3)延性断裂(Ductilefracture)

延性断裂:

断裂前产生明显的永久变形,并且经常有缩颈现象发生。

脆性断裂:

断裂前没有或只有微量的永久变形,也没有缩颈现象,断裂是突然发生的。

---低碳钢延性断裂;

---铸铁脆性断裂。

多数金属和合金通常是延性材料,

大多数陶瓷、玻璃、云母和灰口铁,在室温下一般表现为脆性断裂。

1延性断裂的特征及过程

微观特征是韧窝形貌。

过程可以概括为“微孔成核、微孔长大和微孔聚合”。

在拉伸过程中,先有明显的塑性变形,然后经历下列所示的各阶段,再发生断裂。

a.形成缩颈。

b.微孔成核。

C•微孔逐渐长大。

d.裂纹沿垂直于拉力作用的方向往外扩展。

e.微孔聚合,直到最后断裂。

2微孔成核、长大和聚合的机理

微孔成核长大的机理:

位错;

变形的不协调

两种聚合模式。

正常的聚合一一“几何软化”。

裂纹尖端与微孔、或微孔与微孔之间局部滑移,应变量大,快速剪切裂开。

3影响延性断裂扩展的因素

第二相粒子。

第二相粒子的存在、体积分数、种类、形状

基体的形变强化。

4材料延性大小的表征(拉伸)

Figure7.25

Figure7.11

Figure9.1

理解内容

图4-30

理解

图4-31

Figure9.3

断裂延伸率percentelongation

计算公式掌握

(percentageofplasticstrainatfracture)

%EL=(lf-lo)/lo100

If----thefracturelength

lo---theoriginalgaugelength

横截面积减少率Percentreductioninarea

%EL=(Ao-Af)/Ao100

Ao---originalcross-sectionalarea

Af---cross-sectionalareaatthepointoffracture

难点

Figure7.16

Figure7.17理解

⑤真实应力--应变曲线TRUESTRESSANDSTRAIN

拉伸塑性形变颈缩试样横截面减小

例题:

128.7

x100=30%

(b)TruestressisdefinedbyEquation7.15,whereinthiscasetheareaistakenasthefractureareaAf.However,theloadatfracturemustfirstbecomputedfromthefracturestrengthas

F==060x10sN/mz)(128.7mm2)=59,200N

\10mnr/

Thus,thetruestressiscalculatedas

=6.6X10sN/mz=660MPa(95JOOpsi)

难点

了解并理解

图4-32

Figure9.20

(4)脆性一韧性转变ductile-to-brittletransition

材料的断裂属延性还是脆性还与材料或构件的工作环境和受载方式等外

部因素有关,如应力状态、温度、加载速率等。

脆性状态或韧性状态。

1温度和加载速率的影响

温度对韧脆性转变影响显著

对正断强度影响不大,

对屈服强度影响很大。

脆性转折温度——急剧脆化。

与材料的成分、

纯度、

晶粒大小、

组织状态

晶体结构等因素有关。

加载速率提高,形成裂纹,增加了脆性倾向。

2

了解并充分理解

影响脆性一韧性转变的微观结构因素

第一、晶格类型的影响

A面心立方晶格金属的塑性、韧性好,如铜、铝、奥氏体钢,一般不出现

解理断裂,也没有韧-脆性转变温度。

B体心立方和密排六方金属的塑性、韧性较差,如体心立方晶格的铁、铬、钨和普通钢材,韧脆转变受温度及加载速率的影响较大。

Figure9.22

C微量的氧、氮及间隙原子溶于体心立方晶格中会阻碍滑移,促进其脆性。

第二、成分的影响

A钢中含碳量增加,塑性抗力增加,韧脆性转变温度明显提高,转变的温

度范围也加宽。

B钢中的氧、氮、磷、硫、砷、锑和锡等杂质对钢的韧性也是不利的。

C镍、锰以固溶状态存在,降低韧脆转变温度。

D钢中形成化合物的合金元素,如铬、钼、钛等,是通过细化晶粒和形成

第二相质点来影响韧脆性转变温度的。

第三、晶粒大小的影响

A晶粒细,屈服应力低于断裂抗力,是先屈服后断裂,断裂前有较大的塑性应变,是韧性断裂。

B当晶粒尺寸大于某一数值时,断裂前不再有屈服,是脆性断裂。

第四、第二相粒子的影响细小的第二相粒子有利于降低韧-脆性转变温度。

3

了解内容

应力状态及其柔度系数切应力促进塑性变形,对韧性有利;拉应力促进断裂,不利于韧性。

柔度系数(也叫软性系数)、、一—.max/Smaxa值愈大,愈易处于韧性状态。

「值愈小,相反,愈易倾向脆性断裂。

单向拉伸,:

-=0.5;三向不等拉伸,:

<0.5;扭转,:

-=0.8;单向压缩,:

-=2;侧压,:

->2。

例如,灰口铸铁在单向拉伸(:

-=0.5)时表现为脆性,而在测布氏硬度(侧压,:

>2)时,可以压出一个很大的坑而不开裂。

难点

图4-33

4.断裂韧性Fracturetoughness

提出实际裂纹考虑强度、脆性断裂二者均表示一一断裂韧性

(1)裂纹体的三种变形模式

含有裂纹的构件在外力作用下,裂纹扩展一般有三种。

表4-6

(2)应力强度因子(Ki)和断裂韧性指标(Kic)临界应力强度因子Kc=Y;〒(二.a)"2

•改为外加应力则KerKi

Ki的临界值)Kic(断裂韧性)

Questionsandproblems9.16

该类型题目的计算为重点掌握内容

例题:

9,16Aspecimenofa4341)steelalloyhavingaplan?

strainfractalretoughnessof45MPaXm(41ksi\InJisexposedtoastressof1000MPa(145,000psi).Willibisspecimenexperiencefractureifitiskno\Mithatthelargestsurfacecrackis0.75mm(0.03in.)long?

Why

A^iirne(hattheparameterYhasavalueof].0.

Solution:

Kic=Y.二c.(na)1/2

31/2

=1.0X1000X(3.14X0.75X10-)

1/2

=27.4Mpam

(3)影响因素

组织结构:

晶粒尺寸

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1