Part 9 Review Questions and Exercises.docx

上传人:b****6 文档编号:7314728 上传时间:2023-01-22 格式:DOCX 页数:13 大小:24.18KB
下载 相关 举报
Part 9 Review Questions and Exercises.docx_第1页
第1页 / 共13页
Part 9 Review Questions and Exercises.docx_第2页
第2页 / 共13页
Part 9 Review Questions and Exercises.docx_第3页
第3页 / 共13页
Part 9 Review Questions and Exercises.docx_第4页
第4页 / 共13页
Part 9 Review Questions and Exercises.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

Part 9 Review Questions and Exercises.docx

《Part 9 Review Questions and Exercises.docx》由会员分享,可在线阅读,更多相关《Part 9 Review Questions and Exercises.docx(13页珍藏版)》请在冰豆网上搜索。

Part 9 Review Questions and Exercises.docx

Part9ReviewQuestionsandExercises

SOLUTIONSTOREVIEWQUESTIONS

ANDEXERCISES

FORPART9–BUSINESSINTELLIGENCE(CHAPTERS32–35)

SolutionstoReviewQuestionsandExercises

 

Chapter32DataWarehousingConcepts3

Chapter33DataWarehousing-Design6

Chapter34OLAP8

Chapter35DataMining13

Chapter32DataWarehousingConcepts

ReviewQuestions

32.1Describewhatismeantbythefollowingterms,whendescribingthecharacteristicsofthedatainadatawarehouse:

(a)subject-oriented;

(b)integrated;

(c)time-variant;

(d)non-volatile.

SeeSection32.1.2.

32.2DiscusshowOnlineTransactionProcessing(OLTP)systemsdifferfromdatawarehousingsystems.

SeeSection32.1.4

32.3Discussthemainbenefitsandproblemsassociatedwithdatawarehousing.

ForthemainbenefitsofdatawarehousingseeSection32.1.3andforthemainproblemsassociatedwithdatawarehousingseeSection32.1.5.

32.4Presentadiagrammaticrepresentationofthetypicalarchitectureandmaincomponentsofadatawarehouse.

ForadiagramofthetypicalarchitectureofadatawarehouseseeFigure32.1.

32.5Describethecharacteristicsandmainfunctionsofthefollowingcomponentsofadatawarehouse.

(a)loadmanagerSeeSection32.2.3

(b)warehousemanagerSeeSection32.2.4

(c)querymanagerSeeSection32.2.5

(d)metadataSeeSection32.2.9

(e)end-useraccesstools.SeeSection32.2.10

32.6Describetheprocessesassociatedwithdataextraction,cleansing,andtransformationtools.

TheextractionsteptargetsoneormoredatasourcesfortheEDW;thesesourcestypicallyincludeOLTPdatabasesbutcanalsoincludesourcessuchaspersonaldatabasesandspreadsheets,enterpriseresourceplanning(ERP)files,andwebusagelogfiles.Thedatasourcesarenormallyinternalbutcanalsoincludeexternalsources,suchasthesystemsusedbysuppliersand/orcustomers.

Thetransformationstepappliesaseriesofrulesorfunctionstotheextracteddata,whichdetermineshowthedatawillbeusedforanalysisandcaninvolvetransformationssuchasdatasummations,dataencoding,datamerging,datasplitting,datacalculations,andcreationofsurrogatekeys.Theoutputfromthetransformationsisdatathatiscleanandconsistentwiththedataalreadyheldinthewarehouse,andfurthermore,isinaformthatisreadyforanalysisbyusersofthewarehouse.

Theloadingofthedataintothewarehousecanoccurafteralltransformationshavetakenplaceoraspartofthetransformationprocessing.Asthedataloadsintothewarehouse,additionalconstraintsdefinedinthedatabaseschemaaswellasintriggersactivatedupondataloadingwillbeapplied(suchasuniqueness,referentialintegrity,andmandatoryfields),whichalsocontributetotheoveralldataqualityperformanceoftheETLprocess.

32.7Describethespecializedrequirementsofarelationaldatabasemanagementsystem(RDBMS)suitableforuseinadatawarehouseenvironment.

SeeSection32.4.2

32.8Discusshowparalleltechnologiescansupporttherequirementsofthedatawarehouse.

SeelasttopicdiscussedinSection32.4.2undertheheadingParalleldatabasetechnologies.

32.9Discusstheimportanceofmanagingmeta-dataandhowthisrelatestotheintegrationofthedatawarehouse.

SeeSection32.4.3.

32.10Discussthemaintasksassociatedwiththeadministrationandmanagementofadatawarehouse.

Thedatawarehouseadministrationandmanagementtoolsmustbecapableofsupportingthefollowingtasks:

∙monitoringdataloadingfrommultiplesources;

∙dataqualityandintegritychecks;

∙managingandupdatingmeta-data;

∙monitoringdatabaseperformancetoensureefficientqueryresponsetimesandresourceutilization;

∙auditingdatawarehouseusagetoprovideuserchargebackinformation;

∙replicating,subsetting,anddistributingdata;

∙maintainingefficientdatastoragemanagement;

∙purgingdata;

∙archivingandbacking-updata;

∙implementingrecoveryfollowingfailure;

∙securitymanagement.

SeeSection32.4.4.

32.11Discusshowdatamartsdifferfromdatawarehousesanddiscussthemainreasonsforimplementingadatamart.

ForadiscussiononhowdatamartsdifferfromdatawarehousesseeintroductoryparagraphsofSection321.5andforreasonsforimplementingadatamartseeSection32.5.1.

32.12DescribethefeaturesofOraclethatsupportthecorerequirementsofdatawarehousing.

SeeSection32.6.

Exercises

32.13YouareaskedbytheManagingDirectorofDreamHometoinvestigateandreportontheapplicabilityofdatawarehousingfortheorganization.ThereportshouldcomparedatawarehousetechnologywithOLTPsystemsandshouldidentifytheadvantagesanddisadvantages,andanyproblemareasassociatedwithimplementingadatawarehouse.ThereportshouldreachafullyjustifiedsetofconclusionsontheapplicabilityofadatawarehouseforDreamHome.

Theformatandtheappropriatecontenttobecoveredinansweringthisquestionisdescribedinthequestionset.

 

Chapter33DataWarehousing-Design

ReviewQuestions

33.1Discusstheactivitiesassociatedwithinitiatinganenterprisedatawarehouse(EDW)project.

Tobeginadatawarehouseproject,weneedanswersforquestionssuchas:

whichuserrequirementsaremostimportantandwhichdatashouldbeconsideredfirst?

Also,shouldtheprojectbescaleddownintosomethingmoremanageable,yetatthesametimeprovideaninfrastructurecapableofultimatelydeliveringafull-scaleenterprise-widedatawarehouse?

TherequirementscollectionandanalysisstageofanEDWprojectinvolvesinterviewingappropriatemembersofstaffsuchasmarketingusers,financeusers,salesusers,operationalusers,andmanagementtoenabletheidentificationofaprioritizedsetofrequirementsfortheenterprisethatthedatawarehousemustmeet.Atthesametime,interviewsareconductedwithmembersofstaffresponsibleforOLTPsystemstoidentify,whichdatasourcescanprovideclean,valid,andconsistentdatathatwillremainsupportedoverthenextfewyears.

Theinterviewsprovidethenecessaryinformationforthetop-downview(userrequirements)andthebottom-upview(whichdatasourcesareavailable)oftheEDW.

33.2CompareandcontrasttheapproachestakeninthedevelopmentofanEDWbyInmon’sCorporateInformationFactory(CIF)andKimball’sBusinessDimensionalLifecycle.

Inmon’sapproachistostartbycreatingadatamodelofalltheenterprise’sdata;oncecomplete,itisusedtoimplementanEDW.TheEDWisthenusedtofeeddepartmentaldatabases(datamarts),whichexisttomeettheparticularinformationrequirementsofeachdepartment.TheEDWcanalsoprovidedatatootherspecializeddecisionsupportapplicationssuchasCustomerRelationshipManagement(CRM).Inmon’smethodologyusestraditionaldatabasemethodsandtechniquestodeveloptheEDW.Forexample,entity–relationship(ER)modeling(Chapter12)isusedtodescribetheEDWdatabase,whichholdstablesthatareinthirdnormalform(Chapter14).InmonbelievesthatafullynormalizedEDWisrequiredtoprovidethenecessaryflexibilitytosupportthevariousoverlappinganddistinctinformationrequirementsofallpartsoftheenterprise.

Kimball’sapproachusesnewmethodsandtechniquesinthedevelopmentofanEDW.Kimballstartsbyidentifyingtheinformationrequirements(referredtoasanalyticalthemes)andassociatedbusinessprocessesoftheenterprise.ThisactivityresultsinthecreationofacriticaldocumentcalledaDataWarehouseBusMatrix.Thematrixlistsallofthekeybusinessprocessesofanenterprisetogetherwithanindicationofhowtheseprocessesaretobeanalyzed.Thematrixisusedtofacilitatetheselectionanddevelopmentofthefirstdatabase(datamart)tomeettheinformationrequirementsofaparticulargroupofusersoftheenterprise.Thisfirstdatamartiscriticalinsettingthesceneforthelaterintegrationofotherdatamartsastheycomeonline.TheintegrationofdatamartsultimatelyleadstothedevelopmentofanEDW.Kimballusesanewtechniquecalleddimensionalitymodelingtoestablishthedatamodel(referredtoasadimensionalmodel(DM)foreachdatamart.Dimensionalitymodelingresultsinthecreationofadimensionalmodel(commonlycalledastarschema)foreachdatamartthatishighlydenormalized.Kimballbelievesthattheuseofstarschemasisamoreintuitivewaytomodeldecisionsupportdataandfurthermorecanenhanceperformanceforcomplexanalyticalqueries.

33.3DiscussthemainprinciplesandstagesassociatedwithKimball’sBusinessDimensionalLifecycle.

ThemainstagesaresummarizedinFigure33.1.

33.4Discusstheconceptsassociatedwithdimensionalitymodeling.

Everydimensionalmodel(DM)iscomposedofonetablewithacompositeprimarykey,calledthefacttable,andasetofsmallertables,calleddimensiontables.Eachdimensiontablehasasimple(noncomposite)primarykeythatcorrespondsexactlytooneofthecomponentsofthecompositekeyinthefacttable.Inotherwords,theprimarykeyofthefacttableismadeupoftwoormoreforeignkeys.Thischaracteristic“star-like”structureiscalledastarschemaorstarjoin.AnotherimportantfeatureofaDMisthatallnaturalkeysarereplacedwithsurrogatekeys.Thismeansthateveryjoinbetweenfactanddimensiontablesisbasedonsurrogatekeys,notnaturalkeys.Eachsurrogatekeyshouldhaveageneralizedstructurebasedonsimpleintegers.TheuseofsurrogatekeysallowsthedatainthewarehousetohavesomeindependencefromthedatausedandproducedbytheOLTPsystems.

33.5Describehowstar,snowflake,andstarflakeschemasdiffer.

Starschemaisalogicalstructurethathasafacttablecontainingfactualdatainthecenter,surroundedbydim

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 外语学习 > 法语学习

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1