换向器槽口倒角装置的设计论文毕设论文.docx

上传人:b****5 文档编号:7293864 上传时间:2023-01-22 格式:DOCX 页数:26 大小:546.88KB
下载 相关 举报
换向器槽口倒角装置的设计论文毕设论文.docx_第1页
第1页 / 共26页
换向器槽口倒角装置的设计论文毕设论文.docx_第2页
第2页 / 共26页
换向器槽口倒角装置的设计论文毕设论文.docx_第3页
第3页 / 共26页
换向器槽口倒角装置的设计论文毕设论文.docx_第4页
第4页 / 共26页
换向器槽口倒角装置的设计论文毕设论文.docx_第5页
第5页 / 共26页
点击查看更多>>
下载资源
资源描述

换向器槽口倒角装置的设计论文毕设论文.docx

《换向器槽口倒角装置的设计论文毕设论文.docx》由会员分享,可在线阅读,更多相关《换向器槽口倒角装置的设计论文毕设论文.docx(26页珍藏版)》请在冰豆网上搜索。

换向器槽口倒角装置的设计论文毕设论文.docx

换向器槽口倒角装置的设计论文毕设论文

毕业设计

题目换向器槽口倒角装置的设计

学院机械工程学院

专业机械工程及自动化

班级机自0706

学生令狐凤永

学号20070403103

指导教师樊宁

二〇一年月日(宋体三号,居中)

摘要

电枢是直流有刷电机的关键组件,由换向器、轴及电枢绕组构成,直流电枢绕组中的电流由旋转着的换向器通过静止的电刷流向外电路。

换向器的作用是在发电机状态下将电枢绕组中产生的交变电势整流成电刷阕的直流电势;在电动机状态下将输入的直流电流逆变成电枢绕组中的交变电流,以产生单方向的电磁转矩。

换向器作为电机中的动接触元件,常受磨损,故障较多,成为电机中的薄弱环节文献[1]。

在直流电机的构成部件中,换向器与电刷的接触是电机电路的关键环节,其结构最为复杂、最为薄弱,接触质量对电机性能影响极大。

一旦电刷与换向器之间无法保持稳定的滑动接触,那将产生火花。

为了提高电刷与换向器有良好的接触并防止两者压得过紧而引起磨损,一方面可以在刷顶上装可调节的弹簧压板,另一方面必须通过提高换向器的表面质量来实现,因此对换向器表面质量要求较高。

简言之,换向器是电机的关键部件,由于其结构复杂性,所以一般安排在电枢的所有工序结束后对换向器表面进行精加工以达到提高表面质量的目的,其中一项就是对其的下刻槽口进行倒角。

本设计为解决现行手工倒角方法造成的槽口圆弧大小不均匀,倒角面直线度较差,易划伤已精加工表面,加工效率低的问题,本项目设计一种具有较高加工精度和效率的换向器下刻槽口倒角装置,使加工后的换向器不仅有较高精度的倒角形状,而且通过后续的合理加工能保证在下刻槽口形成大小均匀、直线度好的近似光滑圆弧,这对电机运行时电刷会以一个较平稳的状态滑过槽口,从而满足输出电压纹波平稳和启动电压较低的要求

本设计从换向器的装夹、刀具的对中性、切屑深度及长度的可调性等方面进行整个装置的结构设计和布局。

装置设计为机械式,装置上的对中杆能保证对刀可靠,移位准确,加工时两侧切削均匀,倒角对称度好,断屑可靠,加工后对换向器和电枢结构强度无不良影响。

装置所倒角的最终质量是下刻槽口两侧过渡面经后续加工后为光滑过渡,无毛刺、表面无划伤及多余物。

直接受换向器表面精加工质量影响的电机性能参数合格率提高到98%以上。

 

关键词:

换向器;倒角;下刻槽;

ABSTRACT

CommutatorisakeycomponentoftheDCmotor.Itrepresentsinfactmostofthefailuresbecauseofitsmechanicalcomplexity.(TimesNewRoman小四,1.25倍行距)

Keywords:

(TimesNewRoman五号,加粗)Commutator;×××;×××;×××(TimesNewRoman五号)

(外文摘要要求用英文书写,内容应与中文摘要对应。

阅后删除。

 

摘要………………………………………………………………..…….….……………...

ABSTRACT……………………………………….……………………..…………….

目录………………………………………………………………………………………..Ⅲ

1前言……………..……….……..……………………………………….….……………..1

1.1背景及课题来源..........................………….………….………………………..…..1

1.1.1课题设计的背景…………………………………………………………...1

1.1.2课题来源及目的…………………………………………………………...1

1.2课题设计的意义...........................……….......…………….………….………..1

1.3主要设计内容、技术指标.............…………………………….…....……..………1

1.3.1课题主要设计内容......................………………………….…....……….1

1.3.2技术指标…………………………………………………………………...2

2关于直流电机......................……..….………………………….…..….………….3

2.1直流电机工作原理和分类………………………………………………………3

2.2直流电动机结构…………………………….………………...………………..4

3课题技术方案和技术途径………………………….………………...…………………..8

3.1换向器在有刷直流电机中的作用及影响….………………...…………………...8

3.2换向器精加工工艺方法分析与实践…….………………...………………….......8

3.2.1常规工艺方法简介….………………...…………………………………..8

3.2.2换向器精加工常规工艺方法的不足与缺陷……………...……………...8

3.2.3换向器表面不良情况对测速机输出电压波形的影响…...……………..8

3.2.4改进后的电枢换向器的工艺方法……………………………………...10

3.2.5新工艺在提高换向器表面质量中的作用………………………………11

4换向器倒角装置设计……………………………………………………..……………13

4.1换向器倒角的意义及必要性……………………………………………….…..13

4.2模型的建立及工作原理的实现…………………………………………………13

4.3刀具设计…………………………………………………………………………16

4.3.1设计要求………………………………………………………………...16

4.3.2基本过程……………………………………………………………...…16

4.4换向器倒角装置设计分析与研究………………………………………………18

4.4.1换向器的安装固定及拆取……………………………………………...18

4.4.2换向器片间绝缘槽槽口倒角的加工方法……………………………..18

4.4.3相关结构的设计与调节在换向器倒角功能实现过程中的作用…..…19

4.4.4实验验证及结果分析…………………………………………………..20

5突破的关键技术、技术创新点和推广前景……………………………………………23

5.1突破的关键技术…………………………………………………………………23

5.2主要的技术创新点………………………………………………………………23

5.3推广前景…………………………………………………………………………23

6结论......................……….………….……………………..….……...…..….………...20

参考文献......................…………….…………………..….…..……………….………….25

致谢......................………………….……………………..…….…………...…………….26

附录刀具结构图..……………..……....…...…...…...…………………….…………27

 

1前言

1.1背景及课题来源

1.1.1课题设计的背景

现行的有刷直流力矩电动机和有刷直流测速发电机出于后期的输出电压纹波精度及启动电压要求,一都要求在电枢换向器精车后对换向器下刻槽口进行倒角处理,要求倒角处呈圆弧状,结合后期手段将残留细微毛刺清理干净,电机在运行时当电刷通过换向器下刻槽口时,由于槽口过渡处呈光滑圆弧状,因此电刷会以一个较平稳的状态滑过槽口,从而满足输出电压纹波平稳和启动电压较低的要求。

原有的电枢换向器精车后的下刻槽口倒角均采用手工分两次进行,因两次倒角的角度及位置不同从而在槽口处形成由两根不同角度直线组成的钝角,再用抛光砂清除残留毛刺后得到一个近似圆弧,其缺点在于因是手工操作,每次倒角的角度及位置不一致,造成最终在下刻槽口形成的圆弧大小不一,甚至同一槽口左右相差较大,且倒角面的直线度差,当电机在运行过程中电刷通过换向器下刻槽口时产生一定量级的振动,致使电机运行不平稳从而影响输出电压纹波平稳性和或使启动电压增大,或因换向宽度的不均匀影响电机的其它性能;且因为是手工操作,使用的倒角工具常会划伤已精加工完成的换向器表面,影响电机运行平稳;另外手工操作的效率也较低。

1.1.2课题来源及目的

本课题来源于贵州航天林泉电机有限公司所生产的军品有刷直流电机。

设计目标为:

从换向器的装夹、刀具的对中性、切屑深度及长度的可调性等方面进行整个装置的结构设计和布局。

1.2课题设计的意义

为解决现行手工倒角方法造成的槽口圆弧大小不均匀,倒角面直线度较差,易划伤已精加工表面,加工效率低的问题,本项目设计一种具有较高加工精度和效率的换向器下刻槽口倒角装置,使加工后的换向器不仅有较高精度的倒角形状,而且通过后续的合理加工能保证在下刻槽口形成大小均匀、直线度好的近似光滑圆弧,这对电机运行时电刷会以一个较平稳的状态滑过槽口,从而满足输出电压纹波平稳和启动电压较低的要求具有非常重要的意义。

1.3主要设计内容、技术指标

1.3.1课题主要设计内容

从获得圆滑的下刻槽口过渡面出发,研究制造精确而高效的换向器下刻槽倒角装置(含移位装置和倒角刀具),研究制定合理完善的倒角后续工序(抛光下刻槽口和外圆)。

1.3.2技术指标

(1)下刻槽口倒角后两侧过渡面大小均匀、直线度好,且轴向长度接近下刻槽

长度根部

(2)下刻槽口两侧过渡面经倒角后的后续加工后为光滑过渡,无毛刺、表面无

划伤及多余物。

(3)采用的下刻槽口倒角装置为机械式,装置上的对中杆能保证对刀可靠,移位准确,加工时两侧切削均匀,倒角对称度好,断屑可靠,加工后对换向器和电枢结构强度无不良影响。

(4)下刻槽口两侧过渡面最终质量为过渡面经倒角后的后续加工后为光滑过渡,无毛刺、表面无划伤及多余物。

(5)直接受换向器表面精加工质量影响的输出电压纹波参数合格率提高到98%以上。

2关于直流电机

2.1直流电机工作原理和分类

(1)直流电机的特点

直流电机的优点是:

1)调速范围广、平滑,调速方便;

2)电机的过载能力较大;

3)能快速的起制动和逆转;

4)在运行特性上完全能配合生产工艺上的要求,达到提高生产自动化的目的。

所以直流传动系统应用比较广泛,在电力拖动系统和自动控制系统中,直流电机仍居于相当重要的地位。

与交流电机相比较,直流电机也存在一些缺点:

消耗有色金属较多,制造工艺比较复杂,因此制造成本相对地高一些,其运行维修难度比交流电机要大的多也复杂的多,所以其应用也受到一些限制。

(2)直流电机的主要用途

冶金工业中作为各种轧钢机的驱动电机,主要优点是能在不同转速下运行,并能承受频繁的冲击过载,频繁起、制动和逆转。

在采矿工业中,作为矿山卷扬机和电铲驱动电机,主要是要有良好的调速特性和高过载力矩。

在交通运输方面作为大型船舶推进和机车动力,主要利用它的优越调速特性。

此外,在城市交通、大型起动设备、船舶、航空和国防工业中,直流电机都得到了广泛的应用。

其中有刷直流电机广泛应用于导弹、飞机、自动火炮、雷达、战车等各种军事装备的控制系统中,如导弹导引头位标器的位置控制系统、雷达天线定位和跟踪、陀螺平台、伺服转台、惯性导航控制系统等等。

(3)直流电动机工作原理

直流电动机的作用是将直流电能转换成轴上输出的机械能。

直流电动机的工作原理(如图2.1)所示。

给两个电刷加上直流电源,(如图2.1(a))所示,则有直流电流从电刷A流入,经过线圈abed,从电刷B流出,根据电磁力定律,载流导体ab和cd收到电磁力的作用,其方向可由左手定则判定,两段导体受到的力形成了一个转矩,使得转子逆时针转动。

如果转子转到(如图2.1(b))所示的位置,电刷A和换向片2接触,电刷B和换向片l接触,直流电流从电刷A流入,在线圈中的流动方向是dcba,从电刷B流出。

此时载流导体ab和cd受到电磁力的作用方向同样可由左手定则判定,它们产生的转矩仍然使得转子逆时针转动。

这就是直流电动机的工作原理。

外加的电源是直流的,但由于电刷和换向片的作用,在线圈中流过的电流是交流的,其产生的转矩的方向却是不变的。

实用中的直流电动机转子上的绕组也不是由一个线圈构成,同样是由多个线圈连接而成,以减少电动机电磁转矩的波动,绕组形式同发电机。

图2.1直流电动机工作原理

Fig2.1WorkingprincipleofDCmotor

直流发电机的工作原理与直流电动机的工作原理相反,就是发电机需要输入原动力,把电枢导体中发出的交流电变换成电刷两端的直流电输出给负载。

因此换向器(整流子)是直流电机的关键部件之一,且换向器和电刷的结构最为复杂、最为薄弱。

2.2直流电动机结构

(1)直流电动机结构型式

直流电动机结构型式,根据其容量大小和工作环境和运行方式不同而有很大差别。

根据容量和转矩大小,结构上可分为大、中、小型;根据防护方式不同,又可分为开启式、防护式、防滴式、全封闭式和封闭防水式。

但是不论结构型式差别如何,其主要机构部件和功能还是相同的。

直流电动机主要由定子、转子(电枢)、电刷装置以及支撑保护结构件等所组成

(2)直流电动机主要结构部件

直流电动机包括下面几个主要部分,它们的关系如图2.2所示。

图2.2直流电动机的构成

Fig2.2ComposingofDCmotor

1)定子:

产生磁场,构成磁路,由主磁极、换向极、机座和补偿绕组所组成。

如图2.3。

图2.3定子

Fig2.3StatorofDCmotor

2)主磁极:

是产生励磁磁势和建立主磁场的,由铁心、励磁线圈和极身绝缘组成,如图2.4。

图2.4主磁极

Fig2.4mainmagneticpoleofDCmotor

3)电枢

是实现能量转换的旋转部件,由电枢铁心、电枢绕组、电枢支架、换向器和转轴组成,

4)电刷装置

是构成滑动接触的结构部件之一,由电刷、刷握、刷架以及刷杆座圈所组成。

要求有足够的刚度,在运行中能保持恒定弹簧压力,保持与换向器的良好接触,刷距应严格等分,以保证良好换向。

应考虑在日常维修工作中,能方便地调整中性面和更换电刷。

图2.5是中型电机电刷装置。

图2.5中型直流电机电刷装置

Fig2.5BrushofmiddletypeDCmotor

5)支承和保护部件

这些部件包括轴承、端盖(罩)、底板等支承部件,以及过速测速装置、埋设测温元件和装设在电机内的电加热器等保护装置。

文献[2]

3课题技术方案和技术途径

3.1换向器在有刷直流电机中的作用及影响

电枢是直流有刷电机的关键组件,由换向器、轴及电枢绕组构成,直流电枢绕组中的电流由旋转着的换向器通过静止的电刷流向外电路,换向器与电刷的接触是电机电路的关键环节,其接触质量对电机性能影响极大。

为了提高电刷与换向器有良好的接触并防止两者压得过紧而引起磨损,一方面可以在刷顶上装可调节的弹簧压板,另一方面必须通过提高换向器的表面质量来实现,因此对换向器表面质量要求较高。

一般安排在电枢的所有工序结束后对换向器表面进行精加工以达到提高表面质量的目的。

3.2换向器精加工工艺方法分析与实践

3.2.1常规工艺方法简介

换向器的常规精加工工艺方法分三个步骤进行,其中下刻槽倒角(钳工)为第一步:

方法是:

用自制刮刀对换向器下刻槽两侧进行手工倒角,倒角大小应约大于所留的精加工余量,倒角长度与下刻槽长度一致,不得划伤换向器表面。

3.2.2换向器精加工常规工艺方法的不足与缺陷

用传统方式对换向器表面进行加工时,在每一个工序都存在着不足,造成换向器表面精度达不到要求:

其中传统倒角方法的不足与缺陷

换向器下刻槽两侧倒角为手工进行,倒角大小一致性较差,造成在第二步(精车)后同一换向器或不同换向器的各下刻槽槽口残留的毛刺大小不一致或出现直角。

3.2.3换向器表面不良情况对测速机输出电压波形的影响

用常规工艺方法加工的换向器表面质量对驱动、伺服等电机或对输出电压波形连续性无严格要求的测速机的性能没有明显影响,但对有输出电压波形连续性严格要求的测速机性能影响较大。

综3.2.1条所述常规工艺方法加工的换向器表面质量缺陷为:

下刻槽槽口可能存在体积较大的毛刺,下刻槽槽口过渡不圆滑(为直角过渡),同一批次加工的换向器表面粗糙度不一致。

测速机在运行过程中因电刷宽度与换向片宽度的匹配及电刷相对于换向器垂直度的影响,电刷在经过换向器下刻槽时,不可避免地会与下刻槽口发生一定程度的碰撞,当下刻槽口呈直角甚至有较大毛刺时,这种碰撞会加剧,见(图3.1、图3.2),产生的动量使电刷瞬间脱离换向器,造成电刷与换向器之间的异常接触,产生较大的火花,甚至环火,使得测速机电路瞬时开路,从而使测速机输出电压波形有幅值较大、频次较高的毛刺出现(即波形连续性差)见(图3.3、图3.4)。

图3.1电刷经过呈直角的换向器下刻槽口

图3.2电刷经过有毛刺的换向器下刻槽口

图3.3不合格的输出电压波形,下拉到零位毛刺

图3.4不合格的输出电压波形,密集的下拉毛刺

在实际状况中,不良情况的存在,会在磨刷跑合的过程中使其它情况的出现,如下刻槽口有较大毛刺,在磨合过程中因运行不平稳,对换向器及电刷均有异常磨损,从而使换向器表面出现较深的沟痕,加剧磨合振动,影响输出电压波形连续性。

3.2.4改进后的电枢换向器的工艺方法

为克服现有技术的不足,提高换向器精加工后的质量,对产生各种缺陷的原因深刻分析后,本项目设计出一台新的换向器下刻槽倒角装置,以保证换向器最终加工表面良好且一致性好。

具体是从加工设备、刀具等方面出发,设计出一台效果显著、适用性强、生产效率高、经济性好的换向器倒角装置,提高和保证产品整机装配后的质量及可靠性。

改进后换向器的倒角在换向器精加工方法中五个步骤中分两步,为第一步和第三步:

第一步(钳工):

用自制的换向器倒角工装对换向器下刻槽两侧进行倒角,倒角大小应约等于于所留的精加工余量,倒角长度与下刻槽长度一致,不得划伤换向器表面。

然后进行第二步(精车)。

第三步(钳工):

用自制刮刀对换向器下刻槽两侧进行手工倒角,倒角分两次进行(即对同个槽口棱边倒两刀),第一刀与垂直方向约呈30~45°,宽度约为0.1(参考,与换向器外径尺寸及槽数有关),第二刀与垂直方向约呈70~75°,宽度约为0.2~0.25(参考,与换向器外径尺寸和槽数有关),第二刀倒后第一刀的倒角面允许看不见,不得划伤换向器表面,然后用合适规格的抛光砂对折后插入下刻槽左右摆动清理倒角产生的飞边毛刺,并清理槽内多余物。

第四步、第五步与设计无关略过。

3.2.5新工艺在提高换向器表面质量中的作用

经理论分析,改进后的换向器精加工工艺保证了换向器最终加工表面良好且一致性好

第一步(钳工):

用自制的换向器倒角工装对换向器下刻槽两侧进行倒角,倒角大小均匀一致,加工效率高,不易划伤换向器表面,倒角大小约等于精加工量,这样在第二步(精车)后各下刻槽槽口原有倒角基本看不见,利于第三步(钳工)倒角的一致性与直线度(见图3.5)。

图3.5换向器倒角工装对下刻槽倒角示意图

第三步(钳工)同一下刻槽口倒角分两次进行,因倒角角度不同,第一刀倒角去掉精车后在下刻槽口产生的毛刺,第二刀去掉第一刀产生的毛刺,且用合适规格的抛光砂插入下刻槽口去除了槽口(此时不含外圆)残留毛刺,使得槽口形成了一较为圆滑的过渡面(见图3.6)。

图3.6下刻槽口分两次进行倒角,形成较为圆滑的过渡面

4换向器倒角装置设计

4.1换向器倒角的意义及必要性

现行的有刷直流力矩电动机和有刷直流测速发电机出于后期的输出电压纹波精度及启动电压要求,一般都要求在电枢换向器精车后对换向器下刻槽口进行倒角处理,要求倒角处呈圆弧状,结合后期手段将残留细微毛刺清理干净,电机在运行时当电刷通过换向器下刻槽口时,由于槽口过渡处呈光滑圆弧状,因此电刷会以一个较平稳的状态滑过槽口,从而满足输出电压纹波平稳和启动电压较低的要求。

现有的电枢换向器精车后的下刻槽口倒角均采用手工分两次进行,两次倒角的角度及位置不同从而在槽口处形成由两根不同角度直线组成的钝角,再用抛光砂清除残留毛刺后得到一个近似圆弧,其缺点在于因是手工操作,每次倒角的角度及位置不一致,造成最终在下刻槽口形成的圆弧大小不一,甚至同一槽口左右相差较大,且倒角面的直线度差,当电机在运行过程中电刷通过换向器下刻槽口时产生一定量级的振动,致使电机运行不平稳从而影响输出电压纹波平稳性或使启动电压增大,或因换向宽度的不均匀影响电机的其它性能;且因为是手工操作,使用的倒角工具常会划伤已精加工完成的换向器表面,影响电机运行平稳;另外手工操作的效率也较低。

为解决现行手工倒角方法造成的槽口圆弧大小不均匀,倒角面直线度较差,易划伤已精加工表面,加工效率低的问题,设计一种具有较高加工精度和较高加工效率的换向器下刻槽口倒角装置,使加工后的换向器不仅有较高精度的倒角形状,而且通过后续的合理加工能保证在下刻槽口形成大小均匀、直线度好的近似光滑圆弧,这对电机运行时电刷会以一个较平稳的状态滑过槽口,从而满足输出电压纹波平稳和启动电压较低的要求具有非常重要的意义。

4.2模型的建立及工作原理的实现

为了能够实现换向器倒圆过程,需从换向器的装夹、刀具的对中性、切屑深度及长度的可调性等方面进行整个装置的结构设计和布局:

1.在换向器的装夹固定方式上,可设计为双顶尖定位,通过两端的顶尖(可调顶尖和固定顶尖)对换向器进行夹持,夹持过程通过拨叉手柄来实现。

2.考虑加工过程中的对中性问题,设置辅助设备对中杆、伸出杆,通过对中杆的移动抬起,实现刀具加工过程的对中。

3.在基座上布置精密直线导轨,将刀架通过滑枕与滑块固连,实现同步运动,调节推动手柄,实现加工切削。

经过以上初步分析,可设计出装置的基本模型,模型图如下:

1-底座2-活动顶尖支撑座3-挡板4-拨叉5-螺杆6-锁紧弹簧7-推动手柄8-轴承9-芯轴10-盖板11-调节螺杆12-刀架滑块13-对中杆14-限位板15-刀套16-倒角刀具17-转子18-固定顶尖支19-固定顶尖支撑座20-固定顶尖套筒21-底板22-预紧弹簧23-定位销24-刀架25-滑枕26-精密导轨27-精密导轨滑套28-活动顶尖套筒29-压盖30-对中杆31-伸出杆32-拨叉手柄33-伸出杆螺杆。

4.1换向器下刻槽口倒角装置结构示意图

 

4.2设计模型立体图

本方案设计的换向器下刻槽口倒角装置主要由底座、底板、活动顶尖支撑座、固定顶尖支撑座、活动顶尖、固定顶尖、精密导轨、滑枕、刀架滑块、刀套、刀架、对中杆1、2、倒角刀具、推动手柄、拨叉手柄等组成。

活动顶尖支撑座和固定顶尖支撑座分别固定在底板和底座上、活动顶尖和固定顶尖通过相配的套筒、挡板、螺杆、弹簧等零件固定在活动顶尖支撑座和固定顶尖支撑座上,精密导轨固定在活动顶尖支撑座上,倒角刀具和对中杆1、2组装在刀套内,刀套固定在刀架内,刀架通过定位销与刀架滑枕连接,刀架滑枕通过调节螺杆、盖板等零件与滑枕连接,滑枕固定在精密导轨滑套上,推动手柄通过轴承和芯轴分别与滑枕和活动

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 科学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1