因子分析步骤范例.docx
《因子分析步骤范例.docx》由会员分享,可在线阅读,更多相关《因子分析步骤范例.docx(13页珍藏版)》请在冰豆网上搜索。
因子分析步骤范例
因子分析步骤
范例来源:
语言研究应用SPSS软件实例大全
某对外汉语培训中心对在该中心学习的外国留学生进行了一项汉语学习动机问卷调查。
使用李克特五级式量表。
第一级为最不喜欢,第五级为最喜欢。
随机抽取18人参加调查。
其中—个项目调查的是“内在动机”或称“内在兴趣动机”,了解留学生对汉语语言、文化的兴迎与喜爱。
该项目分为六个问题。
整理数据如下
问题1
问题2
问题3
问题4
问题5
问题6
问题7
学生
我喜欢汉语本身
我对汉语学
习有天生的
兴趣
我非常欣赏
汉语的书法
我喜爱汉
语歌曲
我喜欢汉语戏剧
我喜欢汉语文学
我喜欢汉语文化
1.
2
2
4
4
2
5
4
2.
3
3
3
4
5
4
3
3.
3
3
4
3
4
4
2
4.
2
4
4
2
3
4
1
5.
2
2
4
3
2
4
2
6.
2
5
3
4
3
3
3
7.
3
2
3
5
4
3
4
8.
3
3
5
5
5
4
5
9.
2
1
4
4
5
4
4
10.
3
2
4
3
4
5
3
11.
4
4
3
3
4
4
2
12.
2
1
5
4
3
5
1
13.
1
3
5
5
4
4
2
14.
3
3
4
4
4
4
3
15.
4
2
4
5
5
3
5
16.
4
2
4
4
5
5
3
17.
1
5
5
4
3
4
3
18.
2
3
5
5
2
3
5
一、建立数据集
二、打开Factoranalysis主对话框
1.Analyze(分析)—Detareduction(数据化简)--factor(因素)
2.所有数据放入variable框内
三、进入Factoranalysis主对话框右边的子对话框
(一)Descriptive子对话框
1.选择Univariables(单变量描述统计量):
会输出每个变量的平均数、标准差和观测量
2.选择Initialsolution(初步结果):
会输出原始分析结果:
公因子方差、协方差、各因子的特征值、所占总方差的百分比、累计百分比。
这是默认系统,应该保留。
3.CorrelationMatrix(相关矩阵)围栏,选项含可选择的相关指标与相关检验:
常常选择(1)(4)
(1)coeffieient(相关系数),列出各变量间的相关系数矩阵。
(2)Significancelevel(显著性水平),列出各变量单侧检验的P值。
(3)Determinant(行列式)选项,输出相关系数矩阵的行列式。
(4)KMOandBarlett’stestsofsphericity(开塞-梅耶-欧巴金和巴莱特球性检验)选项(K-Kaiser,M-Meyer,O-Olkin):
列出球性检验的结果,显示因素模型是否合理。
(5)Inverse(逆矩阵):
列出相关系数的逆矩阵。
(6)Reproduced(在生相关矩阵),列出因子分析后估计的相关矩阵与残差。
(7)Anti(逆影像):
列出包括相关系数的负值,包括方差 的负值的逆影像方差矩阵。
(二)Extraction(提取因子)子对话框。
1.Method:
七种方法区别不大。
用默认Principalcomponents(主成分分析法):
从解释变量的变异出发,使变异的方差能够被主成分所解释,主要用于获得初始因子的结果。
2.Analyze围栏:
(1)Correlationmatrix(变量间相关矩阵)。
保留默认。
(2)Covariancematrix(变量间协方差矩阵)
3.Display围栏(输出结果)
(1)a.Unrotatedfactorsolution(显示未经旋转变化的因子提取结果)
(2)Scree plot(碎石图):
横轴为因子序号,纵轴表示特征值大小。
该图按特征值大小依次排列因子,可以看出哪些是主要因子。
MaximumIterationsforconvergence(收敛最大迭代次数)
4.Extract(设定公因子提取标准)围栏:
(1)Eigenvaluesover(以特征大于莫数值为提取标准)。
保留默认选择系统默认值1.
(2)Numberoffactors(自提取因子的数量)。
保留默认选择值1.
(3)Maximumiterationsforconvergence(收敛最大迭代次数),保留默认选择25.
4.Rotation(旋转)
(1)method.选择Varimatrix(正交旋转法)
(2)Display(输出结果显示)
a.Rotatedsolution(旋转解法):
正交旋转,输出旋转后的模式矩阵和因子转换矩阵。
b.Loading plot(载荷散点图:
三维图:
坐标值为因子值,各个变量以三点形式分布其中,可以直观了解变量与因子之间的关系。
5.Scores(因子得分)。
保留默认。
6.Options,保留默认。
保留默认。
确认,得到以下表格:
FACTOR
/VARIABLES 我喜欢汉语本身 我对汉语学习有天生的兴趣 我非常欣赏汉语的书法 我喜爱汉语歌曲 我喜欢汉语戏剧 我喜欢汉语文学 我喜欢汉语文
化
/MISSING LISTWISE
/ANALYSIS 我喜欢汉语本身 我对汉语学习有天生的兴趣 我非常欣赏汉语的书法 我喜爱汉语歌曲 我喜欢汉语戏剧 我喜欢汉语文学 我喜欢汉语文化
/PRINT INITIAL CORRELATION KMO EXTRACTION ROTATION
/PLOT ROTATION
/CRITERIA MINEIGEN
(1) ITERATE(25)
/EXTRACTION PC
/CRITERIA ITERATE(25)
/ROTATION VARIMAX
/SAVE REG(ALL)
/METHOD=CORRELATION.
表1汉语学习动机调查相关矩阵表
CorrelationMatrix
我喜欢汉语本身
我对汉语学习有天生的兴趣
我非常欣赏汉语的书法
我喜爱汉语歌曲
我喜欢汉语戏剧
我喜欢汉语文学
我喜欢汉语文化
Correlation
我喜欢汉语本身
1.000
-.207
-.489
-.033
.581
.000
.225
我对汉语学习有天生的兴趣
-.207
1.000
-.124
-.186
-.193
-.368
-.151
我非常欣赏汉语的书法
-.489
-.124
1.000
.284
-.206
.236
.061
我喜爱汉语歌曲
-.033
-.186
.284
1.000
.234
-.393
.699
我喜欢汉语戏剧
.581
-.193
-.206
.234
1.000
.000
.230
我喜欢汉语文学
.000
-.368
.236
-.393
.000
1.000
-.409
我喜欢汉语文化
.225
-.151
.061
.699
.230
-.409
1.000
图表结果说明:
CorrelationMatrix(相关矩阵表):
该表给出了这七个变量的相关系数矩阵。
它们的相关系数并不怎么高,有的还是负相关。
可以进行分析,不必考虑会有严重的共线性问题。
表2汉语学习动机调查因子分析开塞-梅耶-欧巴金和巴莱特球性检验表
KMOandBartlett'sTest
Kaiser-Meyer-OlkinMeasureofSamplingAdequacy.
.519
Bartlett'sTestofSphericity
Approx.Chi-Square
35.249
df
21
Sig.
.027
图表说明:
KMOandBarlett’stestsofsphericity(开塞-梅耶-欧巴金和巴莱特球性检验)表:
该表专门用来判断对所涉及的的数据能否进行因子分析。
第一行是检验变量间偏相关的性的KMO统计值,为0.591,接近0.52,说明这七个变量是相关的。
根据统计学家的观点,如果KMO值小于0.5,就不宜进行因子分析。
我们这一数值略大于他们提出的临界值,可以进行因子分析。
第二行为Bartlett's(巴莱特)检验卡方值。
该值为35.249,自由度为21度,显著者为0.027,他们之间有共同因素存在,适合进行因子分析。
这一结论与我们观察KMO值得出的理解是完全一致的。
看
表3Communalities(公因子方差表)
Communalities
Initial
Extraction
我喜欢汉语本身
1.000
.830
我对汉语学习有天生的兴趣
1.000
.723
我非常欣赏汉语的书法
1.000
.783
我喜爱汉语歌曲
1.000
.874
我喜欢汉语戏剧
1.000
.652
我喜欢汉语文学
1.000
.847
我喜欢汉语文化
1.000
.796
ExtractionMethod:
PrincipalComponentAnalysis.
表格说明
Communalities(公因子方差表):
表中给出了各变量中信息分别被提出的比例。
提取比例最高的是汉语歌曲0.874,最低的是汉语戏剧0.652.
表4TotalVarianceExplained(能解释的方差比例表),也称主成份列表。
TotalVarianceExplained
Component
InitialEigenvalues
ExtractionSumsofSquaredLoadings
RotationSumsofSquaredLoadings
Total
%ofVariance
Cumulative%
Total
%ofVariance
Cumulative%
Total
%ofVariance
Cumulative%
1
2.213
31.621
31.621
2.213
31.621
31.621
2.078
29.681
29.681
2
1.795
25.640
57.261
1.795
25.640
57.261
1.925
27.507
57.188
3
1.497
21.391
78.652
1.497
21.391
78.652
1.503
21.464
78.652
4
.634
9.050
87.702
5
.399
5.706
93.408
6
.266
3.802
97.211
7
.195
2.789
100.000
ExtractionMethod:
PrincipalComponentAnalysis.
图表说明
TotalVarianceExplained(能解释的方差比例表),也称主成份列表,是一个非常重要的表格。
一个因子所解释的方差比例越高,这个因子包含原有变量信息的量就越多。
第一个成分的初始特征值为2.231,能解释的方差比例为31.621%,第二个与第三个分别为25.6%和21.4%。
其余四个成分都小于1,说明这几个成分的解释力度还不如直接引入原变量大。
这七个变量只需要提取出头三个成分即可。
ExtractionMethod:
PrincipalComponentAnalysis(提取方法,主成份分析表)
表4ScreePlot碎石图
图表说明:
ScreePlot碎石图中,从第三个成分以后的特征值就降得非常低。
第三个成分就是这一图形的“拐点”。
这一之前是主要因子,这一之后是次要因子。
因此,这一碎石图用直观的方法向我们显示,在我们这一实例中,只需要提取三个主要成分就行了。
表5ComponentMatrix成分矩阵表
ComponentMatrixa
Component
1
2
3
我喜欢汉语本身
.549
-.727
.014
我对汉语学习有天生的兴趣
-.245
.151
-.800
我非常欣赏汉语的书法
-.184
.678
.537
我喜爱汉语歌曲
.726
.570
.147
我喜欢汉语戏剧
.628
-.474
.181
我喜欢汉语文学
-.473
-.331
.717
我喜欢汉语文化
.820
.352
.016
ExtractionMethod:
PrincipalComponentAnalysis.
a.3componentsextracted.
图表说明:
ComponentMatrix成分矩阵表,表中列出未使用旋转方法时使用因子能解释的各个变量的比例(各变量的信息被主成份提取了多少)。
ExtractionMethod:
PrincipalComponentAnalysis.提取方法:
主成份分析法
a.3componentsextracted.提取了三个主成份
表6RotatedComponentMatrixa旋转后成分矩阵表
RotatedComponentMatrixa
Component
1
2
3
我喜欢汉语本身
.047
.904
.106
我对汉语学习有天生的兴趣
-.180
-.178
-.811
我非常欣赏汉语的书法
.271
-.715
.445
我喜爱汉语歌曲
.930
-.071
.067
我喜欢汉语戏剧
.266
.724
.238
我喜欢汉语文学
-.519
-.072
.757
我喜欢汉语文化
.874
.175
-.034
ExtractionMethod:
PrincipalComponentAnalysis.
RotationMethod:
VarimaxwithKaiserNormalization.
a.Rotationconvergedin4iterations.
图表说明:
表中列出了使用旋转方法后因子能解释的各个变量的比例。
对比表5可以看出,旋转后,原先较大的比例变得更大,较小的比例则变得更小。
ExtractionMethod:
PrincipalComponentAnalysis:
提取方法:
主要成分分析法
RotationMethod:
VarimaxwithKaiserNormalization:
旋转方法:
开塞正态方差最大变异法
表7ComponentTransformationMatrix成分转换矩阵表
ComponentTransformationMatrix
Component
1
2
3
1
.825
.566
-.005
2
.560
-.818
-.131
3
.079
-.105
.991
ExtractionMethod:
PrincipalComponentAnalysis.
RotationMethod:
VarimaxwithKaiserNormalization.
图表说明
ComponentTransformationMatrix成分转换矩阵表,用来说明旋转前后主成份间的系数对应关系。
ExtractionMethod:
PrincipalComponentAnalysis:
提取方法:
主要成分分析法
RotationMethod:
VarimaxwithKaiserNormalization:
旋转方法:
开塞正态方差最大变异法
表8ComponentPlotRotatedSpace(旋转后的三维主成份图)
图表说明
ComponentPlotRotatedSpace(旋转后的三维主成份图),从图中可见,我们的七个变量并没有在一个方位上,因此提取一个主成份并不能解释大部分信息。
这就是系统提取了三个主成分的原因。