中考二次函数综合运用.docx
《中考二次函数综合运用.docx》由会员分享,可在线阅读,更多相关《中考二次函数综合运用.docx(38页珍藏版)》请在冰豆网上搜索。
中考二次函数综合运用
二次函数的综合运用
1、(2017·重庆B卷25题)如图,已知正比例函数和反比例函数的图象都经过点A(3,3).
(1)求正比例函数和反比例函数的解析式;
(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;
(3)第
(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D三点的二次函数的解析式;
(4)在第(3)问的条件下,二次函数在第一象限的图象上是否存在点E,使四边形OECD的面积S1与四边形OABD的面积S满足:
S1=S?
若存在,求点E的坐标;若不存在,请说明理由.
1、分析:
(1)由抛物线y=ax2+bx+c的对称轴为直线x=-1,交x轴于A、B两点,其中A点的坐标为(-3,0),根据二次函数的对称性,即可求得B点(1,0);
(2)①a=1时,先由对称轴为直线x=-1,求出b的值,再将B(1,0)代入,求出二次函数的解析式为y=x2+2x-3,得到C点坐标,然后设P点坐标为(x,x2+2x-3),根据S△POC=4S△BOC列出关于x的方程,解方程求出x的值,进而得到点P的坐标(4,21)或(-4,5);
②先运用待定系数法求出直线AC的解析式为y=-x-3,再设Q点坐标为(x,-x-3),则D点坐标为(x,x2+2x-3),然后用含x的代数式表示QD=.
2、(2017•丹东)己知:
二次函数(a≠0)与x轴交于A、B两点(点A在点B的左侧),点A、点B的横坐标是一元二次方程x2-4x-12=0的两个根.
(1)请直接写出点A、点B的坐标.
(2)请求出该二次函数表达式及对称轴和顶点坐标.
(3)如图1,在二次函数对称轴上是否存在点P,使△APC的周长最小,若存在,请求出点P的坐标;若不存在,请说明理由.
(4)如图2,连接AC、BC,点Q是线段0B上一个动点(点Q不与点0、B重合).过点Q作QD∥AC交BC于点D,设Q点坐标(m,0),当△CDQ面积S最大时,求m的值.
2、分析:
(1)A(-2,0),B(6,0);
(2),顶点坐标(2,8);
(3)作点C关于抛物线对称轴的对称点C′,连接AC′y=x+2,交抛物线对称轴于P点(2,4);
(4)由DQ∥AC得△BDQ∽△BCA,利用相似比表示△BDQ的面积,利用三角形面积公式表示△ACQ的面积,根据S△CDQ=S△ABC-S△BDQ-S△ACQ=.
3、(2017•珠海)如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(-1,-1-m).
(1)求抛物线l的解析式(用含m的式子表示);
(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;
(3)在满足
(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.
3、
(1)设抛物线l的解析式为y=ax2+bx+c,将A、D、M三点的坐标代入,y=-x2+2mx+m;
(2)设AD与x轴交于点M,过点A′作A′N⊥x轴于点N.根据轴对称及平行线的性质得出DM=OM=x,则A′M=2m-x,OA′=m,在Rt△OA′M中运用勾股定理求出x,得出A′点坐标,运用待定系数法得到直线OA′的解析式,确定E点坐标(4m,-3m),根据抛物线l与线段CE相交,(4m,-8m2+m)列出关于m的不等式组,求出解集即可;(3)根据二次函数的性质,结合
(2)中求出的实数m的取值范围,即可求解p.
4、(2017•舟山)如图,在平面直角坐标系xOy中,抛物线的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.
(1)当m=2时,求点B的坐标;
(2)求DE的长?
(3)①设点D的坐标为(x,y),求y关于x的函数关系式?
②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?
4、
(1)点B的坐标为(0,2);
(2)延长EA,交y轴于点F,证出△AFC≌△AED,进而证出△ABF∽△DAE,利用相似三角形的性质,求出DE=4;
(3)①根据点A和点B的坐标,得到x=2m,,将代入,即可求出二次函数的表达式;
②作PQ⊥DE于点Q,则△DPQ≌△BAF,然后分(如图1)和(图2)两种情况解答.
m的值为8或-8.
5、(2017•张家界)如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.
(1)求直线CD的解析式;
(2)求抛物线的解析式;
(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:
△CEQ∽△CDO;
(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:
在P点和F点移动过程中,△PCF的周长是否存在最小值?
若存在,求出这个最小值;若不存在,请说明理由.
5、
(1)y=-x+1;
(2);(3)关键是证明△CEQ与△CDO均为等腰直角三角形;
(4)如答图②所示,作点C关于直线QE的对称点C′,作点C关于x轴的对称点C″,连接C′C″,交OD于点F,交QE于点P,则△PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,△PCF的周长等于线段C′C″的长度.利用轴对称的性质、两点之间线段最短可以证明此时△PCF的周长最小.
如答图③所示,利用勾股定理求出线段C′C″的长度,即△PCF周长的最小值.
6、(2017•增城市二模)如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与y轴交于点C,与x轴交于A,B两点,点B的坐标为(3,0),直线y=-x+3恰好经过B,C两点
(1)写出点C的坐标;
(2)求出抛物线y=x2+bx+c的解析式,并写出抛物线的对称轴和点A的坐标;
(3)点P在抛物线的对称轴上,抛物线顶点为D且∠APD=∠ACB,求点P的坐标.
6、
(1)由直线y=-x+3可求出C点坐标C(0,3);
(2)由B,C两点坐标便可求出抛物线方程y=x2-4x+3,从而求出抛物线的对称轴x=2和A(1,0)
(3)作出辅助线OE,由三角形的两个角相等,证明△AEC∽△AFP,根据两边成比例,便可求出PF=2,从而求出P点坐标点P的坐标为(2,2)或(2,-2).
7、(2017•新疆)如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).
(1)求抛物线的解析式;
(2)在
(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?
若存在,求出点D的坐标,若不存在,请说明理由;
(3)若点E是
(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.
7、
(1)y=x2-4x+3;
(2)利用待定系数法求出直线AC的解析式y=x-1,然后根据轴对称确定最短路线问题,直线AC与对称轴的交点即为所求点D(2,1);
(3)根据直线AC的解析式y=x+m,设出过点E与AC平行的直线,然后与抛物线解析式联立消掉y得到关于x的一元二次方程,利用根的判别式△=0时,△ACE的面积最大,然后求出此时与AC平行的直线y=x,然后求出点E的坐标,并求出该直线与x轴的交点F的坐标,再求出AF,再根据直线l与x轴的夹角为45°求出两直线间的距离,再求出AC间的距离,然后利用三角形的面积公式列式计算即可得解面积,F坐标.
8、(2017•安顺)如图,已知抛物线与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?
若存在,求出符合条件的点P的坐标;若不存在,请说明理由;
(3)点M是抛物线上一点,以B,C,D,M为顶点的四边形是直角梯形,试求出点M的坐标.
8、分析:
(1)由于A(-1,0)、B(3,0)、C(0,3)三点均在坐标轴上,故设一般式解答和设交点式(两点式)解答均可.y=-x2+2x+3
(2)分以CD为底和以CD为腰两种情况讨论.运用两点间距离公式建立起P点横坐标和纵坐标之间的关系,再结合抛物线解析式即可求解.
(3)根据抛物线上点的坐标特点,利用勾股定理求出相关边长,再利用勾股定理的逆定理判断出直角梯形中的直角,便可解答(2,3).
9、(12分)如图,已知抛物线与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,-1).
(1)求抛物线的解析式;
(2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连结DC,当△DCE的面积最大时,求点D的坐标;
(3)在直线BC上是否存在一点P,使△ACP为等腰三角形,若存在,求点P的坐标,若不存在,说明理由.
解:
(1)∵二次函数的图像经过点A(2,0)C(0,-1)
∴
解得:
b=-c=-1-------------------2分
∴二次函数的解析式为--------3分
(2)设点D的坐标为(m,0)(0<m<2)
∴OD=m∴AD=2-m
由△ADE∽△AOC得,--------------4分
∴
∴DE=-----------------------------------5分
∴△CDE的面积=××m
==
当m=1时,△CDE的面积最大
∴点D的坐标为(1,0)--------------------------8分
(3)存在由
(1)知:
二次函数的解析式为
设y=0则解得:
x1=2x2=-1
∴点B的坐标为(-1,0)C(0,-1)
设直线BC的解析式为:
y=kx+b
∴解得:
k=-1b=-1
∴直线BC的解析式为:
y=-x-1
在Rt△AOC中,∠AOC=900OA=2OC=1
由勾股定理得:
AC=
∵点B(-1,0)点C(0,-1)
∴OB=OC∠BCO=450
①当以点C为顶点且PC=AC=时,
设P(k,-k-1)
过点P作PH⊥y轴于H
∴∠HCP=∠BCO=450
CH=PH=∣k∣在Rt△PCH中
k2+k2=解得k1=,k2=-
∴P1(,-)P2(-,)---10分
②以A为顶点,即AC=AP=
设P(k,-k-1)
过点P作PG⊥x轴于G
AG=∣2-k∣GP=∣-k-1∣
在Rt△APG中AG2+PG2=AP2
(2-k)2+(-k-1)2=5
解得:
k1=1,k2=0(舍)
∴P3(1,-2)----------------------------------11分
③以P为顶点,PC=AP设P(k,-k-1)
过点P作PQ⊥y轴于点Q
PL⊥x轴于点L
∴L(k,0)
∴△QPC为等腰直角三角形
PQ=CQ=k
由勾股定理知
CP=PA=k
∴AL=∣k-2∣,PL=|-k-1|
在Rt△PLA中
(k)2=(k-2)2+(k+1)2
解得:
k=∴P4(,-)------------------------12分
10、(本题满分12分)已知抛物线交x轴于A(1,0)、B(3,0)两点,交y轴于点C,其顶点为D.
(1)求b、c的值并写出抛物线的对称轴;
(2)连接BC,过点O作直线OE⊥BC交抛物线的对称轴于点E.
求证:
四边形ODBE是等腰梯形;
(3)抛物线上是否存在点Q,使得△OBQ的面积等于四边形ODBE的