SERS物理增强机理精.docx

上传人:b****5 文档编号:7029611 上传时间:2023-01-16 格式:DOCX 页数:11 大小:658.67KB
下载 相关 举报
SERS物理增强机理精.docx_第1页
第1页 / 共11页
SERS物理增强机理精.docx_第2页
第2页 / 共11页
SERS物理增强机理精.docx_第3页
第3页 / 共11页
SERS物理增强机理精.docx_第4页
第4页 / 共11页
SERS物理增强机理精.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

SERS物理增强机理精.docx

《SERS物理增强机理精.docx》由会员分享,可在线阅读,更多相关《SERS物理增强机理精.docx(11页珍藏版)》请在冰豆网上搜索。

SERS物理增强机理精.docx

SERS物理增强机理精

SimulationofRamanEnhancementinSERS-ActiveSubstrateswithAuLayerConsideringDifferentGeometryofNanoparticles

Hui-WenCheng1andYimingLi1,2,3,*

InstituteofCommunicationsEngineering,NationalChiaoTungUniversity,1001Ta-HsuehRoad,Hsinchu300,Taiwan2

DepartmentofElectricalEngineering,NationalChiaoTungUniversity,1001Ta-HsuehRoad,Hsinchu300,Taiwan

3

NationalNanoDeviceLaboratories,Hsinchu300,Taiwan

*

Tel:

+88635712121ext52974;Fax:

+88635726639;E-mail:

*****************.edu.tw

Abstract-Inthiswork,westudysurfaceenhancedRamanidentificationofRhdamine6G(R6G)areexamined.Thispaperspectroscopy(SERS)activesubstratesforthedetectionofisorganizedasfollows.InSec.II,weintroducethefabricationRhodamine6G.Toexaminetheelectromagneticenhancement,processandcomputationaltechniquefortheSERS-activewithdifferentshapeofnanoparticle,weapplythefinite-substrates.InSec.III,thelocalfieldenhancementsof

differencetimedomain(FDTD)algorithmtoanalyzethenanoparticlewithdifferentshapesarecalculatedbythree-structuresbysolvingasetofcoupledMaxwell’sequationsindimensional(3D)finite-differencetime-domain(FDTD)differentialform.Thefieldenhancementsareinvestigatedinthenumericalsimulation.Finally,wedrawtheconclusionsandvisibleregimewiththewavelengthof633nm.Inthesuggestthefuturework.

experimentalmeasurement,thesurfaceenhancedRamanscatteringsignalsfromthesurfaceofsubstrateswith12-hour

II.FABRICATIONANDCOMPUTATIONALTECHNIQUEhydrothermaltreatmentandwithouttreatmentareperformed

andcompared.Throughthethree-dimensional(3D)FDTDFortheflowoffabrication,asshowninFig.1,first,calculation,theenhancementswithdifferentshapeofbufferedoxideetchant(BOE)andstandardRCAcleaningare

nanoparticlearetestedandobtainedwhicharenanoparticle,carriedouttopreparecleansiliconsubstrates(Boron-doped

goldnanocageandgold/silveralloyforspherical,cubicandpyramidicalshapes.Theresultsshowthattheenhancementof

(i)sphericalandcubicshapescanbemuchimprovedbynanocage

andgold/siliveralloystructures.

Keywords-Surface-EnhancedRamanspectroscopy(SERS),electromagneticenhancement,nanoparticle,goldnanocage,gold/silveralloy,finite-differencetime-domain,hydrothermallytreatedsubstrate.

(ii)

I.INTRODUCTION

Surface-enhancedRamanScattering(SERS)isoneofthecharacterizationtechniques,whichissensitivetotheenhancedelectromagneticfields[1-6].SERS-activesubstrateshaverecentlyattractedagreatdealofattentionforrapididentificationofchemicalandbacterialsamples[5-7].Thefabricatednanostructuresforbothbottom-upandtop-downapproacheshavebeenreported.And,thedegreeofRamanenhancementisstronglydependentonthemorphologyofformulatednanostructures[8].Recently,atop-downapproachforthefabricationofSERS-activesubstratewasproposed[9-12].However,theexpensivesubstrate,equipmentsandcomplicatedprocessareneeded.Therefore,alowcost,environmentfriendlyandsimplefabricationforSERS-activesubstrateswillbeofgreatinterestforbasicandclinicalresearchersaswellasforbiotechnologies.Inthisstudy,weexperimentallyandcomputationallystudythelocalfieldenhancementsofnanoparticlesonhydrothermallyroughenedSERS-activesubstrates,wheretheeffectsofshapeandsizeofAuparticlesandapplicationofthefabricatedsamplesin

(iii)

(iv)

Figure1.SchematicrepresentationforthefabricationofSERS-activesubstrate.First,siliconwaferswerecleanedbyBOEandstandardRCAcleaningprocedures.Then,Tifilmsweredepositedonthepre-cleanedsiliconwafersusingreactiveDCmagnetronsputteringsystem.Theasdepositedsampleswerecleavedandtreatedunderhydrothermalconditionsforvariousdurations.Subsequently,Auwasthermalevaporatedontothehydrothermallyroughenedsubstratesforsensing..

Figure.2(a)TheAFMimageoftitaniumthinfilmstreatedunderhydrothermalconditionfor12hourstreatmentduration.(b)Theplotofsimulatedsubstratewhichispartofrealsubstrate,wherethematrixofnanoparticlesis3x5duetoperiodicalpropertyofthesimulatedstructure.

p<100>).Then,100-nm-thicktitaniumfilmsaredepositedonthepre-cleanedsiliconwafersusingreactiveDCmagnetronsputteringsystem.Theas-depositedsampleiscleavedinto0.5cmx1cmsquaresandrinsedwithethanol,andde-ionizedwater.Subsequently,thesampleisputintoa23mLTeflon-linedstainlesssteelautoclavefilledwith20mLdistilledwater,whichissealed,andheatedat200oCfor2,4,6,8,10,and12hours,respectively.Thenthetreatedsampleiscooledtoroomtemperaturenaturally,washedwithdistilledwaterforseveraltimes,anddriedwithastreamofcylinderair.Forexample,theimageofFig.2(a)showstheAFMimagesrepresenttitaniumthinfilmstreatedunderhydrothermalconditionsfor12hourstreatmentduration.

TheimageofFig.2(b)showstheplaneviewofthegold-coatednanoparticularstructure,wherethematrixofnanoparticlesis3x5duetoperiodicalpropertyofthesimulatedstructure.Numericalsimulationusinga3DFDTDmethodisconductedtoinvestigatethelocalfieldenhancementofsubstrate[13-15].TheMaxwell’scurlequationsinlinear,isotropic,nondispersive,lossymaterialsare

∂B

K

KK∂=−∇×E,

(1)∂EKKt∂t=−J1KK

ε+με

∇×B,

(2)∇⋅BK

=0,(3)

Figure3.ThesimulationprocedureofsolvingtheMaxwell’sequations.

∇K⋅EK=ρ

ε

(4)

whereEKandBK

arethevectorsofelectricandmagneticfields,respectively,ϵandμarepermeabilityandpermittivityandJKandρarethecurrentdensityvectorandchargedensity.Foragloballydefinedcurvilinearspace,Maxwell’sequationsareeasilyimplementedintheirdifferentialform,whereFaraday’slawisEq.

(1)andAmpere’slawisEq.

(2).

TheFDTDmethodsolvesMaxwell’sequationsbyfirstdiscretizingallequationsviacentraldifferencesintimeandspace.Then,basedupona3DYee’smeshandcomponentsoftheelectricandmagneticfieldsatpoints,thediscretizedspacinginthex,y,andzdirectionsadoptedinoursimulationare|x|=0.01um,|y|=0.01umand|z|=0.01um,wherethetimestepΔtis0.0004andthetimedurationTis3inunitsoffemtoseconds.Thediscretizedequationsareiterativelysolvedinaleapfrogmanner,alternatingbetweencomputingtheEand

HfieldsatsubsequentΔt/2intervals,asshowninFig.3.Notably,weemploytheperfectlymatchedlayerasthesimulationdomainboundariesinwhichbothelectricandmagneticconductivitiesareintroducedinsuchawaythatwaveimpedanceremainsconstant,absorbingtheenergywithout

inducingreflections.III.RESULTSANDDISCUSSION

Inordertohavelesslightabsorption,thelargerscatteringofsubstrateisbettertoachievelargerfieldenhancement.Forchemicalsensing,thehydrothermallyroughenedsubstratesaretreatedwithaqueoussolutionsof10-4MR6G.TheThechemicalstructureofR6GisshowninFig.4(a).Fig.4(b)showsthatthecharacteristicRamanvibrationalmodesofR6Gimmobilizedonthesubstratewithorwithouthydrothermaltreatment.Thesubstratewithhydrothermaltreatmentshows

Figure4.(a)ChemicalstructureofRhodamine6G(R6G).ThemoleculeiswidelyusedforSERSmeasurements.(b)TheRamanspectraforR6G(10-4M)immobilizedonhydrothermallyuntreated(blue)andtreated(orange)

substrates.

AuAg

Figure5.Goldnanoparticle,goldnanocageandgold/silveralloy(fromlefttoright)forspherical,cubicandpyramidicalshapes,respectively.

largerintensitythanthatwithouthydrothermaltreatmentduetotheroughnessonthesurface[16].AccordingtotheBeckmann-Kirchhofftheory,theroughenedsurfacehaslargerscatteringonthesurfaceofsubstratesothattheintensitycanbeenhanced.ThroughusingtheFDTDsimulation,theevaluationofelectricfieldonthesubstratesiscarriedoutbythedirectinglightwithawavelengthof633nm.

Notablythenanosensoralsocanbefabricatedbyothersynthesismethodstoachievedifferentshapeofnanoparticles.

Figure6.Theplotofelectricfieldenhancementfactorversusdifferentsamples.

Figure.7.Thetopviewofelectricfielddistributionwithsphericalshapeof(a)Aunanoparticle,(b)Aunanocageand(c)Au/Agalloy,respectively.

Here,weconsidergoldnanoparticle,goldnanocageandgold/silveralloy(fromlefttoright)forspherical,cubicandpyramidicalshapes,asshowninFig5.Thesimulationresultsshowthattheelectricfield(Ex)enhancementofnanoparticlewithcubicshapeislargerthanthatwithsphericalandpyramidshapes,asshowninFig.6.Toimprovetheenhancement,thestructureisconsideredtofabricatebydifferentsynthesizedstructuresforspherical,cubicandpyramidicalshapes,respectively.ThesynthesizedstructuresareillustratedinFig.5,whicharethegoldnanocage(middleone)andgold/silveralloywithemptyandsilverinside,respectively.FromtheresultsofFig.6,theAu/Agalloyandgoldnanocageareadoptedforsphericalandcubicshapesbecausetheenhancementismuchimproved.Forpyramid,theEmetalalloyisalmostthesame.Theseresultscanbeexplainedxenhancementofnanocageorbydistributionofelectricfield.ThecorrespondingdistributionsofelectricfieldareshowninFig.7,8and9,respectively.Forsphericalshape,theenhancementofAunanoparticleislocally

Figure.8.Topviewsofelectricfielddistributionwiththecubicshapeof(a)

Aunanoparticle,(b)Aunanocage,(c)andAu/Agalloy,respectively.

Figure.9.Topviewsofelectricfielddistributionwiththepyramidicalshapeof(a)Aunanoparticle,(b)Aunanocage,and(c

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 环境科学食品科学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1