细胞生物学名词解释1细胞cell细胞是由膜包围着含有细胞核或拟.docx
《细胞生物学名词解释1细胞cell细胞是由膜包围着含有细胞核或拟.docx》由会员分享,可在线阅读,更多相关《细胞生物学名词解释1细胞cell细胞是由膜包围着含有细胞核或拟.docx(44页珍藏版)》请在冰豆网上搜索。
细胞生物学名词解释1细胞cell细胞是由膜包围着含有细胞核或拟
细胞生物学名词解释
1.细胞(cell)
细胞是由膜包围着含有细胞核(或拟核)的原生质所组成,是生物体的结构和功能的基本单位,也是生命活动的基本单位。
细胞能够通过分裂而增殖,是生物体个体发育和系统发育的基础。
细胞或是独立的作为生命单位,或是多个细胞组成细胞群体或组织、或器官和机体;细胞还能够进行分裂和繁殖;细胞是遗传的基本单位,并具有遗传的全能性。
2.细胞质(cellplasma)
是细胞内除核以外的原生质,即细胞中细胞核以外和细胞膜以内的原生质部分,包括透明的粘液状的胞质溶胶及悬浮于其中的细胞器。
3.原生质(protoplasm)
生活细胞中所有的生活物质,包括细胞核和细胞质。
4.原生质体(potoplast)
脱去细胞壁的细胞叫原生质体,是一生物工程学的概念。
如植物细胞和细菌(或其它有细胞壁的细胞)通过酶解使细胞壁溶解而得到的具有质膜的原生质球状体。
动物细胞就相当于原生质体。
5.细胞生物学(cellbiology)
细胞生物学是以细胞为研究对象,从细胞的整体水平、亚显微水平、分子水平等三个层次,以动态的观点,研究细胞和细胞器的结构和功能、细胞的生活史和各种生命活动规律的学科。
细胞生物学是现代生命科学的前沿分支学科之一,主要是从细胞的不同结构层次来研究细胞的生命活动的基本规律。
从生命结构层次看,细胞生物学位于分子生物学与发育生物学之间,同它们相互衔接,互相渗透。
6.细胞学说(celltheory)
细胞学说是1838~1839年间由德国植物学家施莱登和动物学家施旺所提出,直到1858年才较完善。
它是关于生物有机体组成的学说,主要内容有:
①细胞是有机体,一切动植物都是由单细胞发育而来,即生物是由细胞和细胞的产物所组成;
②所有细胞在结构和组成上基本相似;
③新细胞是由已存在的细胞分裂而来;
④生物的疾病是因为其细胞机能失常。
7.原生质理论(protoplasmtheory)
1861年由舒尔策(MaxSchultze)提出,认为有机体的组织单位是一小团原生质,这种物质在一般有机体中是相似的,并把细胞明确地定义为:
“细胞是具有细胞核和细胞膜的活物质”。
1880年Hanstain将细胞概念演变成由细胞膜包围着的原生质,分化为细胞核和细胞质。
8.细胞遗传学(cytogenetics)
遗传学和细胞学结合建立了细胞遗传学,主要是从细胞学的角度,特别是从染色体的结构和功能,以及染色体和其他细胞器的关系来研究遗传现象,阐明遗传和变异的机制。
9.细胞生理学(cytophysiology)
细胞学同生理学结合建立了细胞生理学,主要研究内容包括细胞从周围环境中摄取营养的能力、代谢功能、能量的获取、生长、发育与繁殖机理,以及细胞受环境的影响而产生适应性和运动性的活动。
细胞的离体培养技术对细胞生理学的研究具有巨大贡献。
10.细胞化学(cytochemistry)
细胞学和化学的结合产生了细胞化学,主要是研究细胞结构的化学组成及化学分子的定位、分布及其生理功能,包括定性和定量分析。
如1943年克劳德(Claude)用高速离心法从细胞匀浆液中分离线粒体,然后研究它的化学组成和生理功能并得出结论:
线粒体是细胞氧化中心。
1924年Feulgen发明的DNA的特殊染色方法---Feulgen反应开创了DNA的定性和定量分析。
11.分子生物学(molecularbiology)
在分子水平上研究生命现象的科学。
研究生物大分子(核酸、蛋白质)的结构、功能和生物合成等方面来阐明各种生命现象的本质。
研究内容包括各种生命过程如光合作用、发育的分子机制、神经活动的机理、癌的发生等。
12.分子细胞生物学(molecularbiologyofthecell)
以细胞为对象,主要在分子水平上研究细胞生命活动的分子机制,即研究细胞器、生物大分子与生命活动之间的变化发展过程,研究它们之间的相互关系,以及它们与环境之间的相互关系。
13.支原体(mycoplasma)
又称霉形体,是最简单的原核细胞,支原体的大小介于细菌与病毒之间,直径为0.1~0.3um,约为细菌的十分之一,能够通过滤菌器。
支原体形态多变,有圆形、丝状或梨形,光镜下难以看清其结构。
支原体具有细胞膜,但没有细胞壁。
它有一环状双螺旋DNA,没有类似细菌的核区(拟核),能指导合成700多种蛋白质。
支原体细胞中惟一可见的细胞器是核糖体,每个细胞中约有800~1500个。
支原体可以在培养基上培养,也能在寄主细胞中繁殖。
支原体没有鞭毛,无活动能力,可以通过分裂法繁殖,也有进行出芽增殖的。
14.结构域(domain)∶
生物大分子中具有特异结构和独立功能的区域,特别指蛋白质中这样的区域。
在球形蛋白中,结构域具有自己特定的四级结构,其功能部依赖于蛋白质分子中的其余部分,但是同一种蛋白质中不同结构域间常可通过不具二级结构的短序列连接起来。
蛋白质分子中不同的结构域常由基因的不同外显子所编码。
15.模板组装(templateassembly)
由模板指导,在一系列酶的催化下,合成新的、与模板完全相同的分子。
这是细胞内一种极其重要的组装方式,DNA和RNA的分子组装就属于此类。
16.酶效应组装(enzymaticassembly)
相同的单体分子在不同的酶系作用下,生成不同的产物。
如以葡萄糖为原料既可合成纤维素,也可合成淀粉,就看进入那条酶促反应途径。
17.自体组装(selfassembly)
生物大分子借助本身的力量自行装配成高级结构,现代的概念应理解为不需要模板和酶系的催化,以别于模板组装和酶效应组装。
其实,这种组装也需要一种称为分子伴侣的蛋白介导,如核小体的组装就需要核质素的介导。
18.引发体(primosome)
是蛋白复合体,主要成份是引物酶和DNA解旋酶,是在合成用于DNA复制的RNA引物时装配的。
引发体与DNA结合后随即由引物酶合成RNA引物。
19.剪接体(splicesome)
进行hnRNA剪接时形成的多组分复合物,主要是有小分子的核RNA和蛋白质组成。
20原核细胞(prokaryoticcell)
组成原核生物的细胞。
这类细胞主要特征是没有明显可见的细胞核,同时也没有核膜和核仁,只有拟核,进化地位较低。
21.古细菌(archaebacteria)
一类特殊细菌,在系统发育上既不属真核生物,也不属原核生物。
它们具有原核生物的某些特征(如无细胞核及细胞器),也有真核生物的特征(如以甲硫氨酸起始蛋白质的合成,核糖体对氯霉素不敏感),还具有它们独有的一些特征(如细胞壁的组成,膜脂质的类型)。
因之有人认为古细菌代表由一共同祖先传来的第三界生物(古细菌,原核生物,真核生物)。
它们包括酸性嗜热菌,极端嗜盐菌及甲烷微生物。
可能代表了活细胞的某些最早期的形式。
22.真细菌(Bacteria,eubacteria)
除古细菌以外的所有细菌均称为真细菌。
最初用于表示“真”细菌的名词主要是为了与其他细菌相区别。
23.中膜体(mesosome)
中膜体又称间体或质膜体,是细菌细胞质膜向细胞质内陷折皱形成的。
每个细胞有一个或数个中膜体,其中含有细胞色素和琥珀酸脱氢酶,为细胞提供呼吸酶,具有类似线粒体的作用,故又称为拟线粒体。
24.真核细胞(eucaryoticcell)
构成真核生物的细胞称为真核细胞,具有典型的细胞结构,有明显的细胞核、核膜、核仁和核基质;遗传信息量大,并且有特化的膜相结构。
真核细胞的种类繁多,既包括大量的单细胞生物和原生生物(如原生动物和一些藻类细胞),又包括全部的多细胞生物(一切动植物)的细胞。
25.生物膜结构体系(biomembranesystem)
细胞内具有膜包被结构的总称,包括细胞质膜、核膜、内质网、高尔基体、溶酶体、线粒体和叶绿体等。
膜结构体系的基本作用是为细胞提供保护。
质膜将整个细胞的生命活动保护起来,并进行选择性的物质交换;核膜将遗传物质保护起来,使细胞核的活动更加有效;线粒体和叶绿体的膜将细胞的能量发生同其它的生化反应隔离开来,更好地进行能量转换。
膜结构体系为细胞提供较多的质膜表面,使细胞内部结构区室化。
由于大多数酶定位在膜上,大多数生化反应也是在膜表面进行的,膜表面积的扩大和区室化使这些反应有了相应的隔离,效率更高。
另外,膜结构体系为细胞内的物质运输提供了特殊的运输通道,保证了各种功能蛋白及时准确地到位而又互不干扰。
例如溶酶体的酶合成之后不仅立即被保护起来,而且一直处于监护之下被运送到溶酶体小泡。
26.遗传信息表达结构系统(geneticexpressionsystem)
该系统又称为颗粒纤维结构系统,包括细胞核和核糖体。
细胞核中的染色质是纤维结构,由DNA和组蛋白构成。
染色体的一级结构是由核小体组成的串珠结构,其直径为10nm,又称为10纳米纤维。
核糖体是由RNA和蛋白质构成的颗粒结构,直径为15~25nm,由大小两个亚基组成,它是细胞内合成蛋白质的场所。
27.细胞骨架系统(cytoskeletonicsystem)
细胞骨架是由蛋白质与蛋白质搭建起的骨架网络结构,包括细胞质骨架和细胞核骨架。
细胞骨架系统的主要作用是维持细胞的一定形态,使细胞得以安居乐业。
细胞骨架对于细胞内物质运输和细胞器的移动来说又起交通动脉的作用;细胞骨架还将细胞内基质区域化;此外,细胞骨架还具有帮助细胞移动行走的功能。
细胞骨架的主要成分是微管、微丝和中间纤维。
28.细胞社会学(cellsociology)
细胞社会学是从系统论的观点出发,研究细胞整体和细胞群体中细胞间的社会行为(包括细胞间识别、通讯、集合和相互作用等),以及整体和细胞群对细胞的生长、分化和死亡等活动的调节控制。
细胞社会学主要是在体外研究细胞的社会行为,用人工的细胞组合研究不同发育时期的相同细胞或不同细胞的行为;研究细胞之间的识别、粘连、通讯以及由此产生的相互作用、作用本质、以及对形态发生的影响等。
细胞质膜与跨膜运输
1.膜(membrane)
通常是指分割两个隔间的一层薄薄的结构,可以是自然形成的或是人造的,有时很柔软。
存在于细胞结构中的膜不仅薄,而且具有半透性(semipermeablemembrane),允许一些不带电的小分子自由通过。
2.细胞膜(cellmembrane)
细胞膜是细胞膜结构的总称,它包括细胞外层的膜和存在于细胞质中的膜,有时也特指细胞质膜。
3.胞质膜(cytoplasmicmembrane)
存在于细胞质中各膜结合细胞器中的膜,包括核膜、内质网膜、高尔基体膜、溶酶体膜、线粒体膜、叶绿体膜、过氧化物酶体膜等。
4.细胞质膜(plasmamembrane)
是指包围在细胞表面的一层极薄的膜,主要由膜脂和膜蛋白所组成。
质膜的基本作用是维护细胞内微环境的相对稳定,并参与同外界环境进行物质交换、能量和信息传递。
另外,在细胞的生存、生长、分裂、分化中起重要作用。
真核生物除了具有细胞表面膜外,细胞质中还有许多由膜分隔成的各种细胞器,这些细胞器的膜结构与质膜相似,但功能有所不同,这些膜称为内膜(internalmembrane),或胞质膜(cytoplasmicmembrane)。
内膜包括细胞核膜、内质网膜、高尔基体膜等。
由于细菌没有内膜,所以细菌的细胞质膜代行胞质膜的作用。
5.生物膜(biomembrane,orbiologicalmembrane)
是细胞内膜和质膜的总称。
生物膜是细胞的基本结构,它不仅具有界膜的功能,还参与全部的生命活动。
6.膜骨架(membraneskeleton)
细胞质膜的一种特别结构,是由膜蛋白和纤维蛋白组成的网架,它参与维持细胞质膜的形状并协助质膜完成多种生理功能,这种结构称为膜骨架。
膜骨架首先是通过红细胞膜研究出来的。
红细胞的外周蛋白主要位于红细胞膜的内表面,并编织成纤维状的骨架结构,以维持红细胞的形态,限制膜整合蛋白的移动。
7.血影蛋白(spectrin)
又称收缩蛋白,是红细胞膜骨架的主要成份,但不是红细胞膜蛋白的成份,约占膜提取蛋白的30%。
血影蛋白属红细胞的膜下蛋白,这种蛋白是一种长的、可伸缩的纤维状蛋白,长约100nm,由两条相似的亚基∶β亚基(相对分子质量220kDa)和α亚基(相对分子质量200kDa)构成。
两个亚基链呈现反向平行排列,扭曲成麻花状,形成异二聚体,两个异二聚体头-头连接成200nm长的四聚体。
5个或6个四聚体的尾端一起连接于短的肌动蛋白纤维并通过非共价键与外带4.1蛋白结合,而带4.1蛋白又通过非共价键与跨膜蛋白带3蛋白的细胞质面结合,形成“连接复合物”。
这些血影蛋白在整个细胞膜的细胞质面下面形成可变形的网架结构,以维持红细胞的双凹圆盘形状。
8.血型糖蛋白(glycophorin)
血型糖蛋白又称涎糖蛋白(sialoglycoprotein),因它富含唾液酸。
血型糖蛋白是第一个被测定氨基酸序列的蛋白质,有几种类型,包括A、B、C、D。
血型糖蛋白B、C、D在红细胞膜中浓度较低。
血型糖蛋白A是一种单次跨膜糖蛋白,由131个氨基酸组成,其亲水的氨基端露在膜的外侧,结合16个低聚糖侧链。
血型糖蛋白的基本功能可能是在它的唾液酸中含有大量负电荷,防止了红细胞在循环过程中经过狭小血管时相互聚集沉积在血管中。
9.带3蛋白(band3protein)
与血型糖蛋白一样都是红细胞的膜蛋白,因其在PAGE电泳分部时位于第三条带而得名。
带3蛋白在红细胞膜中含量很高,约为红细胞膜蛋白的25%。
由于带3蛋白具有阴离子转运功能,所以带3蛋白又被称为“阴离子通道”。
带3蛋白是由两个相同的亚基组成的二聚体,每条亚基含929个氨基酸,它是一种糖蛋白,在质膜中穿越12~14次,因此,是一种多次跨膜蛋白。
10.锚定蛋白(ankyrin)
又称2.1蛋白。
锚定蛋白是一种比较大的细胞内连接蛋白,每个红细胞约含10万个锚定蛋白,相对分子质量为215,000。
锚定蛋白一方面与血影蛋白相连,另一方面与跨膜的带3蛋白的细胞质结构域部分相连,这样,锚定蛋白借助于带3蛋白将血影蛋白连接到细胞膜上,也就将骨架固定到质膜上。
11.带4.1蛋白(band4.1protein)
是由两个亚基组成的球形蛋白,它在膜骨架中的作用是通过同血影蛋白结合,促使血影蛋白同肌动蛋白结合。
带4.1蛋白本身不同肌动蛋白相连,因为它没有与肌动蛋白连接的位点。
12.内收蛋白(adducin)
是由两个亚基组成的二聚体,每个红细胞约有30,000个分子。
它的形态似不规则的盘状物,高5.4nm,直径12.4nm。
内收蛋白可与肌动蛋白及血影蛋白复合体结合,并且通过Ca2+和钙调蛋白的作用影响骨架蛋白的稳定性,从而影响红细胞的形态。
13.磷脂(phospholipids)
含有磷酸基团的脂称为磷脂,是细胞膜中含量最丰富和最具特性的脂。
动、植物细胞膜上都有磷脂,是膜脂的基本成分,约占膜脂的50%以上。
磷脂分子的极性端是各种磷脂酰碱基,称作头部。
它们多数通过甘油基团与非极性端相连。
磷脂又分为两大类:
甘油磷脂和鞘磷脂。
甘油磷脂包括磷脂酰乙醇胺、磷脂酰胆碱(卵磷脂)、磷脂酰肌醇等。
磷脂分子的疏水端是两条长短不一的烃链,称为尾部,一般含有14~24个偶数碳原子。
其中一条烃链常含有一个或数个双键,双键的存在造成这条不饱和链有一定角度的扭转。
磷脂烃链的长度和不饱和度的不同可以影响磷脂的相互位置,进而影响膜的流动性。
各种磷脂头部基团的大小、形状、电荷的不同则与磷脂-蛋白质的相互作用有关。
14.胆固醇(cholesterol)
胆固醇存在于真核细胞膜中。
胆固醇分子由三部分组成:
极性的头部、非极性的类固醇环结构和一个非极性的碳氢尾部。
胆固醇的分子较其他膜脂要小,双亲媒性也较低。
胆固醇的亲水头部朝向膜的外侧,疏水的尾部埋在脂双层的中央。
胆固醇分子是扁平和环状的,对磷脂的脂肪酸尾部的运动具有干扰作用,所以胆固醇对调节膜的流动性、加强膜的稳定性有重要作用。
动物细胞膜胆固醇的含量较高,有的占膜脂的50%,大多数植物细胞和细菌细胞质膜中没有胆固醇,酵母细胞膜中是麦角固醇。
15.脂质体(liposome)
将少量的磷脂放在水溶液中,它能够自我装配成脂双层的球状结构,这种结构称为脂质体,所以脂质体是人工制备的连续脂双层的球形脂质小囊。
脂质体可作为生物膜的研究模型,并可作为生物大分子(DNA分子)和药物的运载体,因此脂质体是研究膜脂与膜蛋白及其生物学性质的极好材料。
在构建导弹人工脂质体时,不仅要将被运载的分子或药物包入脂质体的内部水相,同时要在脂质体的膜上做些修饰,如插入抗体便于脂质体进入机体后寻靶。
16.整合蛋白(integralprotein)
又称内在蛋白(intrinsicprotein)、跨膜蛋白(transmembraneprotein),部分或全部镶嵌在细胞膜中或内外两侧,以非极性氨基酸与脂双分子层的非极性疏水区相互作用而结合在质膜上。
实际上,整合蛋白几乎都是完全穿过脂双层的蛋白,亲水部分暴露在膜的一侧或两侧表面;疏水区同脂双分子层的疏水尾部相互作用;整合蛋白所含疏水氨基酸的成分较高。
跨膜蛋白可再分为单次跨膜、多次跨膜、多亚基跨膜等。
跨膜蛋白一般含25%~50%的α螺旋,也有β折叠,如线粒体外膜和细菌质膜中的孔蛋白。
17.外周蛋白(peripheralprotein)
又称附着蛋白((protein-attached)。
这种蛋白完全外露在脂双层的内外两侧,主要是通过非共价健附着在脂的极性头部,或整合蛋白亲水区的一侧,间接与膜结合。
外周蛋白可用高盐或碱性pH条件分离。
实际上,有时外周蛋白与整合蛋白是难以区分的,因为许多膜蛋白是由多亚基组成的,其中有的亚基插入在脂双层,有些亚基则是外周蛋白。
外周蛋白为水溶性,占膜蛋白总量的20%~30%,在红细胞中占50%,如红细胞的血影蛋白和锚定蛋白都是外周蛋白。
外周蛋白可以增加膜的强度,或是作为酶起某种特定的反应,或是参与信号分子的识别和信号转导。
18.脂锚定蛋白(lipid-anchored)
又称脂连接蛋白(lipid-linkedprotein),通过共价健的方式同脂分子结合,位于脂双层的外侧。
同脂的结合有两种方式,一种是蛋白质直接结合于脂双分子层,另一种方式是蛋白并不直接同脂结合,而是通过一个糖分子间接同脂结合。
通过与糖的连接被锚定在膜脂上的蛋白质主要是通过短的寡糖与包埋在脂双层外叶中的糖基磷脂酰肌醇(glycosylphophatidylionositol,GPI)相连而被锚定在质膜的外侧。
之所以能够在膜上发现这类脂锚定蛋白,是因为用特异识别和切割含有肌醇磷脂的磷脂酶处理细胞膜能释放出蛋白质。
这类脂锚定蛋白通常是膜受体、酶和细胞粘着分子。
一种很少见的贫血阵发性血红蛋白夜尿就是GPI合成缺陷,导致红细胞容易破裂所至。
另一类存在于细胞质面脂锚定蛋白是通过长的包埋在脂双层中的碳氢链进行锚定的。
目前至少发现两种蛋白(Src和Ras)是通过这种方式被锚定在质膜的细胞质面,提示这种锚定方式与细胞从正常状态向恶性状态转化有关。
19.片层结构模型(Lamellastructuremodel)
1935年JamesDanielli和HughDavson所提出,又称或三明治式模型。
该模型认为膜的骨架是脂肪形成的脂双层结构,脂双层的内外两侧都是由一层蛋白质包被,即蛋白质-脂-蛋白质的三层结构,内外两层的蛋白质层都非常薄。
并且,蛋白层是以非折叠、完全伸展的肽链形式包在脂双层的内外两侧。
1954年对该模型进行了修改:
膜上有一些二维伸展的孔,孔的表面也是由蛋白质包被的,这样使孔具有极性,可提高水对膜的通透性。
这一模型是第一次用分子术语描述的结构,并将膜结构同所观察到的生物学理化性质联系起来,对后来的研究有很大的启发。
20.单位膜模型(unitmembranemodel)
1959年J.D.Robertson所提出。
主要是根据电子显微镜的观察,发现细胞膜是类似铁轨结构(“railroadtrack”),两条暗线被一条明亮的带隔开,显示暗---明---暗的三层,总厚度为7.5nm,中间层为3.5nm,内外两层各为2nm。
并推测:
暗层是蛋白质,透明层是脂,并建议将这种结构称为单位膜。
单位膜模型是在片层结构模型的基础上发展起来的另一个重要模型。
它与片层结构模型有许多相同之处,最重要的修改是膜脂双分子层内外两侧蛋白质存在的方式不同。
单位膜模型强调的是蛋白质为单层伸展的β折叠片状,而不是球形蛋白。
另外,单位膜模型还认为膜的外侧表面的膜蛋白是糖蛋白,而且膜蛋白在两侧的分布是不对称的。
这一模型能够解释细胞质膜的一些基本特性,例如质膜有很高的电阻,这是由于膜脂的非极性端的碳氢化合物是不良导体的缘故;再如由于膜脂的存在,使它对脂溶性强的非极性分子有较高的通透性,而脂溶性弱的小分子则不易透过膜。
单位膜也有一些不足∶首先该模型把膜看成是静止的,无法说明膜如何适应细胞生命活动的变化;其二,不同的膜其厚度不都是7.5nm,一般在5~10nm之间;其三,如果蛋白质是伸展的,则不能解释酶的活性同构型的关系。
还有,该模型也不能解释为什么有的膜蛋白很容易被分离,有些则很难。
21.流动镶嵌模型(fluidmosaicmodel)
1972年Singer和Nicolson总结了当时有关膜结构模型及各种研究新技术的成就,提出了流动镶嵌模型,认为球形膜蛋白分子以各种镶嵌形式与脂双分子层相结合,有的附在内外表面,有的全部或部分嵌入膜中,有的贯穿膜的全层,这些大多是功能蛋白。
流动相嵌模型有两个主要特点。
其一,蛋白质不是伸展的片层,而是以折叠的球形镶嵌在脂双层中,蛋白质与膜脂的结合程度取决于膜蛋白中氨基酸的性质。
第二个特点就是膜具有一定的流动性,不再是封闭的片状结构,以适应细胞各种功能的需要。
这一模型强调了膜的流动由性和不对称性,较好地体现细胞的功能特点,被广泛接受,也得到许多实验的支持。
后来又发现碳水化合物是以糖脂或糖蛋白的形式存在于膜的外侧表面。
22.孔蛋白(porin)
孔蛋白是存在于细菌质膜的外膜、线粒体和叶绿体的外膜上的通道蛋白,它们允许较大的分子通过,其中线粒体孔蛋白可通过的最大分子为6000道尔顿,而叶绿体的孔蛋白则可通过相对分子质量在10,000到13,000之间的物质。
孔蛋白是膜整合蛋白,它的膜脂结合区与其他的跨膜蛋白不同,不是α螺旋,而是β折叠。
23.冰冻断裂(freezefracture)
一种制备电子显微镜样品的方法。
将组织放在液氮中快速下冷冻,然后用冰刀使样品断裂分割,通过金属复形可进行电镜观察。
24.膜蛋白放射性标记法(radioactivelabelingprocedure)
研究细胞膜蛋白分布不对称的一种方法。
实验中首先要分离细胞膜,然后用乳过氧化物酶进行膜蛋白标记。
由于过氧化物酶的分子较大而不能透过细胞膜,这样可以用于标记膜外表面的蛋白,包括外周蛋白和整合蛋白的外部分。
标记后,分离膜蛋白,电泳分离和放射自显影进行鉴定。
若是要标记膜内侧的蛋白,则需将膜置于低离子强度的溶液中以提高膜的通透性,使乳过氧化物酶进入膜泡进行内侧蛋白的标记。
25.相变(phasetransition)
膜的流动镶嵌模型说明生物