旋转LED制作过程.docx
《旋转LED制作过程.docx》由会员分享,可在线阅读,更多相关《旋转LED制作过程.docx(19页珍藏版)》请在冰豆网上搜索。
旋转LED制作过程
DIY基于51单片机的旋转LED数字电子钟(红外线遥控调时)
在网上看到不少老外做的各种旋转LED显示屏,非常COOL,我也动手用洞洞板试做了一个类似的显示屏,结果感觉还不错。
于是再接再励继续努力,将作品进一步改进,完善后制成如今这个样子。
由于刚学51单片机,加上制作电路板软件也是从零开始,的确花了我不少的时间和精力。
不过也就是在这艰难的独立制作中,真正学到了不少实在的东西。
本项目的关键是如何解决高速旋转的电路板如何供电,如何调时的问题。
我采用电机电刷的原理,将旋转轴钻空,通过一只插头将电源的从反面引到前面的电路板上,而这个旋转的插头又与固定在背板上的两个铜片接触的。
调时的问题有些困难,一是让电路板在旋转前与PC机相接,由电脑传送调时数据,这虽然可行但不方便。
还有就是用遥控方法,但此方案在调试方面有很大的困难。
显示方式上,我采用平衡式的两排LED,这除了在旋转时能较好的保持平衡外,主要能利用两边交替显示方式,比单排要快一倍。
本装置不仅是一个时钟,它还可以动态显示汉字及图案,这就看如何发挥了。
其具体制作过程如下:
一。
旋转电机的制作
从制作成本与方便考虑,选用旧电脑用的大软驱上的直流无刷电机,只是对局部进行改造。
就是这种古董软驱
软驱上的直流无刷电机
拆开后的电机
仔细拆开直流电机,将带圆盘的铝轴从中开孔,让它刚好能插入一个插头。
将旋转轴加工成这样
装配好以后
按拆开时的顺序,反序将轴安装直流电机上。
电机装配完成后
用两片铜片做的电刷
电刷装好后的侧面图
将电路板上较突出的元件改焊在反面,
电机的电源接法。
从电路板标注的符号看,“+”为电源正,“G”为电源负,
“C”与“M”端分别与电源正相连匀可使电机运转
将一张旧唱片按电机座的位置开孔,而定位用的挡光板应根据电路板上感光组件的位置确定。
二。
电路板的制作
本制作品用51单片机控制,具体电原理图如下:
用Protel99设计制作了电路板。
最后得到完成的作品。
遥控器用的是松下车载机的,只用了其中的六个键。
三。
软件编程
因学的是C51(不懂汇编)这里只提供C语言源程序,并限制为无遥控功能。
也可提供带遥控功能的hex文件。
#include
sbitgate11=P3^0;
sbitgate12=P3^1;
#defineunitunsignedint
#defineucharunsignedchar
uchardataBUFFER[]={0,0,0,0,1,1,7};
uchardataM[]={31,28,31,30,31,30,31,31,30,31,30,31};
ucharcodeNUM1[]=
{
0x80,0x7F,0xC0,0xFF,0x40,0x90,0x40,0x8C, //-0-
0x40,0x82,0xC0,0xFF,0x80,0x7F,0x00,0x00,
0x00,0x00,0x00,0x81,0x80,0x81,0xC0,0xFF, //-1-
0xC0,0xFF,0x00,0x80,0x00,0x80,0x00,0x00,
0x80,0xE0,0xC0,0xF0,0x40,0x98,0x40,0x8C, //-2-
0x40,0x86,0xC0,0xC3,0x80,0xC1,0x00,0x00,
0x80,0x40,0xC0,0xC0,0x40,0x84,0x40,0x84, //-3-
0x40,0x84,0xC0,0xFF,0x80,0x7B,0x00,0x00,
0x00,0x0C,0x00,0x0E,0x00,0x0B,0x80,0x89, //-4-
0xC0,0xFF,0xC0,0xFF,0x00,0x88,0x00,0x00,
0xC0,0x47,0xC0,0xC7,0x40,0x84,0x40,0x84, //-5-
0x40,0x8C,0x40,0xFC,0x40,0x78,0x00,0x00,
0x00,0x7F,0x80,0xFF,0xC0,0x84,0x40,0x84, //-6-
0x40,0x84,0x00,0xFC,0x00,0x78,0x00,0x00,
0xC0,0x00,0xC0,0x00,0x40,0xF0,0x40,0xF8, //-7-
0x40,0x0C,0xC0,0x07,0xC0,0x03,0x00,0x00,
0x80,0x7B,0xC0,0xFF,0x40,0x84,0x40,0x84, //-8-
0x40,0x84,0xC0,0xFF,0x80,0x7B,0x00,0x00,
0x80,0x03,0xC0,0x87,0x40,0x84,0x40,0x84, //-9-
0x40,0xC4,0xC0,0x7F,0x80,0x3F,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x63, //-:
-
0x00,0x63,0x00,0x00,0x00,0x00,0x00,0x00,
};
ucharcodeNUM2[]=
{
0x00,0x00,0x7f,0x80,0xff,0xc0,0x82,0x40, //-0-
0x8c,0x40,0x90,0x40,0xff,0xc0,0x7f,0x80,
0x00,0x00,0x00,0x00,0x20,0x40,0x60,0x40, //-1-
0xff,0xc0,0xff,0xc0,0x00,0x40,0x00,0x40,
0x00,0x00,0x41,0xc0,0xc3,0xc0,0x86,0x40, //-2-
0x8c,0x40,0x98,0x40,0xf0,0xc0,0x60,0xc0,
0x00,0x00,0x40,0x80,0xc0,0xc0,0x88,0x40, //-3-
0x88,0x40,0x88,0x40,0xff,0xc0,0x77,0x80,
0x00,0x00,0x0c,0x00,0x1c,0x00,0x34,0x00, //-4-
0x64,0x40,0xff,0xc0,0xff,0xc0,0x04,0x40,
0x00,0x00,0xf8,0x80,0xf8,0xc0,0x88,0x40, //-5-
0x88,0x40,0x8c,0x40,0x8f,0xc0,0x87,0x80,
0x00,0x00,0x3f,0x80,0x7f,0xc0,0xc8,0x40, //-6-
0x88,0x40,0x88,0x40,0x0f,0xc0,0x07,0x80,
0x00,0x00,0xc0,0x00,0xc0,0x00,0x83,0xc0, //-7-
0x87,0xc0,0x8c,0x00,0xf8,0x00,0xf0,0x00,
0x00,0x00,0x77,0x80,0xff,0xc0,0x88,0x40, //-8-
0x88,0x40,0x88,0x40,0xff,0xc0,0x77,0x80,
0x00,0x00,0x70,0x00,0xf8,0x40,0x88,0x40, //-9-
0x88,0x40,0x88,0xc0,0xff,0x80,0x7f,0x00,
0x00,0x00,0x00,0xc0,0x01,0x80,0x03,0x00, //-/-
0x06,0x00,0x0c,0x00,0x18,0x00,0x30,0x00,
};
unitdisp1,disp2,key1,key2;
unitii,jj;
uniti,sw,xz;
voidDelay(unitms){
ms=ms*3;
while(--ms);
}
voidnum_led(intkk,inttt)
{
intjj;
for(jj=0;jj<8;jj++){
gate11=key1;gate12=key2;
P2=~NUM1[kk+jj*2];P1=~NUM1[kk+1+jj*2];
Delay(20);
P1=0xff;P2=0xff;
gate11=key2;gate12=key1;
P2=~NUM2[tt+15-jj*2];P1=~NUM2[tt+14-jj*2];
Delay(20);
P1=0xff;P2=0xff;
}
}
voiddisplay_clock(void)
{
key1=!
key1;key2=!
key2;
disp1=BUFFER[3]/10;disp2=BUFFER[4]-(BUFFER[4]/10)*10;
ii=disp1*16;jj=disp2*16;
num_led(ii,jj);
P2=0xff;P1=0xff;Delay(60);
disp1=BUFFER[3]-disp1*10;disp2=BUFFER[4]/10;
ii=disp1*16;jj=disp2*16;
num_led(ii,jj);
P2=0xff;P1=0xff;Delay(60);
ii=160;jj=160;
num_led(ii,jj);
P2=0xff;P1=0xff;Delay(60);
disp1=BUFFER[2]/10;disp2=BUFFER[5]-(BUFFER[5]/10)*10;
ii=disp1*16;jj=disp2*16;
num_led(ii,jj);
P2=0xff;P1=0xff;Delay(60);
disp1=BUFFER[2]-disp1*10;disp2=BUFFER[5]/10;
ii=disp1*16;jj=disp2*16;
num_led(ii,jj);
P2=0xff;P1=0xff;Delay(60);
ii=160;jj=160;
num_led(ii,jj);
P2=0xff;P1=0xff;Delay(60);
disp1=BUFFER[1]/10;disp2=BUFFER[6]-(BUFFER[6]/10)*10;
ii=disp1*16;jj=disp2*16;
num_led(ii,jj);
P2=0xff;P1=0xff;Delay(60);
disp1=BUFFER[1]-disp1*10;disp2=BUFFER[6]/10;
ii=disp1*16;jj=disp2*16;
num_led(ii,jj);
P2=0xff;P1=0xff;Delay(60);
}
voidtimer0(void) interrupt1using1
{
TMOD=0x11;
TH0=-(5000/256);
TL0=-(5000%256);
TR0=1;
BUFFER[0]=BUFFER[0]+1;
if(BUFFER[6]%4==0)M[1]=M[1]+1;
if(BUFFER[0]>201+xz){
BUFFER[0]=0;
BUFFER[1]=BUFFER[1]+1;
if(BUFFER[1]==60){
BUFFER[1]=0;
BUFFER[2]=BUFFER[2]+1;
if(BUFFER[2]==60){
BUFFER[2]=0;
BUFFER[3]=BUFFER[3]+1;
if(BUFFER[3]==24){
BUFFER[3]=0;
BUFFER[4]=BUFFER[4]+1;
if(BUFFER[4]>M[BUFFER[5]-1]){
BUFFER[4]=1;
BUFFER[5]=BUFFER[5]+1;
if(BUFFER[5]>12){
BUFFER[5]=1;
BUFFER[6]=BUFFER[6]+1;
if(BUFFER[6]>99){
BUFFER[6]=0;
M[1]=M[1]-1;
}
}
}
}
}
}
}
}
voidintersvr0(void) interrupt0
{
sw=1;
}
voidmain(void)
{
xz=8;
key1=1;key2=0;
EA=1;
IT0=1;EX0=1;
IT1=1;ET0=1;
TMOD=0x11;
TH0=-5000/256;TL0=-5000%256;
TR0=1;
for(;;){
Delay(10);
if(sw==1){display_clock();sw=0;}
}
}
四。
运行效果
从开机,调整到最后完成。
开机时
调时状态
正常运行状态