高考化学 考点必练 专题28 物质结构与性质知识点讲解.docx

上传人:b****5 文档编号:6697769 上传时间:2023-01-09 格式:DOCX 页数:24 大小:581.98KB
下载 相关 举报
高考化学 考点必练 专题28 物质结构与性质知识点讲解.docx_第1页
第1页 / 共24页
高考化学 考点必练 专题28 物质结构与性质知识点讲解.docx_第2页
第2页 / 共24页
高考化学 考点必练 专题28 物质结构与性质知识点讲解.docx_第3页
第3页 / 共24页
高考化学 考点必练 专题28 物质结构与性质知识点讲解.docx_第4页
第4页 / 共24页
高考化学 考点必练 专题28 物质结构与性质知识点讲解.docx_第5页
第5页 / 共24页
点击查看更多>>
下载资源
资源描述

高考化学 考点必练 专题28 物质结构与性质知识点讲解.docx

《高考化学 考点必练 专题28 物质结构与性质知识点讲解.docx》由会员分享,可在线阅读,更多相关《高考化学 考点必练 专题28 物质结构与性质知识点讲解.docx(24页珍藏版)》请在冰豆网上搜索。

高考化学 考点必练 专题28 物质结构与性质知识点讲解.docx

高考化学考点必练专题28物质结构与性质知识点讲解

考点二十八物质结构与性质知识点讲解

一、原子结构

1.能层与能级

由必修的知识,我们已经知道多电子原子的核外电子的能量是不同的,由内而外可以分为:

第一、二、三、四、五、六、七……能层

符号表示K、L、M、N、O、P、Q……

能量由低到高

例如:

钠原子有11个电子,分布在三个不同的能层上,第一层2个电子,第二层8个电子,第三层1个电子。

由于原子中的电子是处在原子核的引力场中,电子总是尽可能先从内层排起,当一层充满后再填充下一层。

理论研究证明,原子核外每一层所能容纳的最多电子数如下:

能层一二三四五六七……

符号KLMNOPQ……

最多电子数28183250……

即每层所容纳的最多电子数是:

2n2(n:

能层的序数)

但是同一个能层的电子,能量也可能不同,还可以把它们分成能级(S、P、d、F),就好比能层是楼层,能级是楼梯的阶级。

各能层上的能级是不一样的。

能级的符号和所能容纳的最多电子数如下:

能层KLMNO……

能级1s2s2p3s3p3d4s4p4d4f……

最多电子数2262610261014……

各能层电子数28183250……

(1)每个能层中,能级符号的顺序是ns、np、nd、nf……

(2)任一能层,能级数=能层序数

(3)s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍

各能层所包含的能级类型及各能层、能级最多容纳的电子数见下表:

2.构造原理

根据构造原理,只要我们知道原子序数,就可以写出几乎所有元素原子的电子排布。

即电子所排的能级顺序:

1s2s2p3s3p4s3d4p5s4d5p6s4f5d6p7s……

电子填充的先后顺序(构造原理)为:

1s 2s2p 3s3p 4s3d4p 5s4d5p 6s4f5d6p 7s5f6d7p ...

ns(n-2)f(n-1)dnp

构造原理揭示了原子核外电子的能级分布。

不同能层的能级有交错现象,

如E(3d)>E(4s)、E(4d)>E(5s)、E(5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)等。

构造原理是书写基态原子电子排布式的依据,也是绘制基态原子电子排布图(即轨道表示式)的主要依据之一。

如:

Na:

1s22s22p63s1,能级符号上面数字是该能级上的电子数。

元素原子的电子排布:

(1—36号)

氢H1s1……

钠Na1s22s22p63s1……

钾K1s22s22p63s23p64s1【Ar】4s1……

有少数元素的基态原子的电子排布对于构造原理有一个电子的偏差,如:

铬24Cr[Ar]3d54s1铜29Cu[Ar]3d104s1

例如:

写出17Cl(氯)、21Sc(钪)、35Br(溴)的电子排布

氯:

1s22s22p63s23p5

钪:

1s22s22p63s23p63d14s2

溴:

1s22s22p63s23p63d104s24p5

3.电子云和原子轨道:

(1)电子运动的特点:

①质量极小②运动空间极小③极高速运动。

因此,电子运动来能用牛顿运动定律来描述,只能用统计的观点来描述。

我们不可能像描述宏观运动物体那样,确定一定状态的核外电子在某个时刻处于原子核外空间如何,而只能确定它在原子核外各处出现的概率。

概率分布图看起来像一片云雾,因而被形象地称作电子云。

常把电子出现的概率约为90%的空间圈出来,人们把这种电子云轮廓图成为原子轨道。

S的原子轨道是球形的,能层序数越大,原子轨道的半径越大。

P的原子轨道是纺锤形的,每个P能级有3个轨道,它们互相垂直,分别以Px、Py、Pz为符号。

P原子轨道的平均半径也随能层序数增大而增大。

s电子的原子轨道都是球形的(原子核位于球心),能层序数,2越大,原子轨道的半径越大。

这是由于1s,2s,3s……电子的能量依次增高,电子在离核更远的区域出现的概率逐渐增大,电子云越来越向更大的空间扩展。

这是不难理解的,打个比喻,神州五号必须依靠推动(提供能量)才能克服地球引力上天,2s电子比1s电子能量高,克服原子

核的吸引在离核更远的空间出现的概率就比1s大,因而2s电子云必然比1s电子云更扩散。

(2)[重点难点]泡利原理和洪特规则

量子力学告诉我们:

ns能级各有一个轨道,np能级各有3个轨道,nd能级各有5个轨道,nf能级各有7个轨道.而每个轨道里最多能容纳2个电子,通常称为电子对,用方向相反的箭头“↑↓”来表示。

一个原子轨道里最多只能容纳2个电子,而且自旋方向相反,这个原理成为泡利原理。

推理各电子层的轨道数和容纳的电子数。

当电子排布在同一能级的不同轨道时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则是洪特规则。

洪特规则的特例:

对于同一个能级,当电子排布为全充满、半充满或全空时,是比较稳定的。

特例:

24Cr1s22s22p63s23p63d54s129Cu1s22s22p63s23p63d104s1

3d3d

半充满全充满

轨道表示式:

用“□”表示轨道,用“↑”或“↓”表示容纳的电子。

1s1s

如:

1H2He

1s2s1s2s2p

3Li6C

注意:

ns能级各有1个轨道,np能级各有3个轨道,nd能级各有5个轨道,nf能级各有7个轨道。

而每个轨道里最多能容纳2个电子,通常称为电子对,用方向相反的箭头“↑↓”来表示。

“↑”“↓”表示自选方向相反。

4.基态、激发态、光谱

1.基态:

最低能量状态。

如处于最低能量状态的原子称为基态原子。

2.激发态:

较高能量状态(相对基态而言)。

如基态原子的电子吸收能量后,电子跃迁至较高能级成为激发态原子。

3.光谱:

不同元素的原子发生跃迁时会吸收(基态→激发态)和放出(基态→激发态)能量,产生不同的光谱——原子光谱(吸收光谱和发射光谱)。

利用光谱分析可以发现新元素或利用特征谱线鉴定元素。

小结:

原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。

处于最低能量的原子叫做基态原子。

当基态原子的电子吸收能量后,电子会跃迁到较高能级,变成激发态原子。

电子从较高能量的激发态跃迁到较低能量的激发态乃至基态时,将释放能量。

光(辐射)是电子释放能量的重要形式之一。

不同元素的原子发生跃迁时会吸收或释放不同的光,可以用光谱仪摄取各种元素的电子的吸收光谱或发射光谱,总称原子光谱。

许多元素是通过原子光谱发现的。

在现代化学中,常利用原子光谱上的特征谱线来鉴定元素,称为光谱分析。

二、分子结构

1.共价键

⑴.共价键的本质及特征

共价键的本质是在原子之间形成共用电子对,其特征是具有饱和性和方向性。

⑵.共价键的类型

①按成键原子间共用电子对的数目分为单键、双键、三键。

②按共用电子对是否偏移分为极性键、非极性键。

③按原子轨道的重叠方式分为σ键和π键,前者的电子云具有轴对称性,后者的电子云具有镜像对称性。

说明:

①两原子间形成的共价键中,共价单键为σ键,共价双键中有一个σ键和一个π键,共价三键中有一个σ键和二个π键。

②并不是所有的分子中都含有共价键,如单原子的稀有气体分子中无共价键。

⑶.键参数

①键能:

气态基态原子形成1mol化学键释放的最低能量,键能越大,化学键越稳定。

②键长:

形成共价键的两个原子之间的核间距,键长越短,共价键越稳定。

③键角:

在原子数超过2的分子中,两个共价键之间的夹角。

④键参数对分子性质的影响

键长越短,键能越大,分子越稳定.

⑷.等电子原理

原子总数相同、价电子总数相同的分子具有相似的化学键特征,它们的许多性质相近。

应用:

①判断微粒成键方式、空间构型;②推测性质。

如CO与N2。

常见等电子体的空间构型

等电子体类型

常见等电子体

空间构型

2原子10电子(价电子,下同)

CO,N2,CN-,

,NO+,

直线形

2原子14电子

F2,

,Cl2

直线形

3原子8电子

H2O,H2S,N

V形

3原子16电子

CO2,N2O,CNO-,

,N

,SCN-,HgCl2,BeCl2(g)

直线形

3原子18电子

O3,SO2,N

V形

4原子8电子

NH3,PH3,C

,H3O+

三角锥形

4原子24电子

SO3(g),C

,N

,B

BF3

平面三角形

4原子26电子

S

,Cl

,Br

,I

,XeO3

三角锥形

5原子8电子

CH4,SiH4,N

,P

,B

正四面体形

5原子32电子

CCl4,SiF4,Si

,S

,Cl

,P

正四面体形

12原子30电子

C6H6,N3B3H6(俗称无机苯)

平面六边形

7原子48电子

Al

,Si

,P

,SF6

八面体形

2.分子的立体构型

⑴ 价层电子对互斥理论

①价电子:

原子在参与化学反应时能够用于成键的电子,是原子核外跟元素化合价有关的电子。

在主族元素中,价电子数就是最外层电子数。

②价层:

就是显现化合价的电子层,通常指原子的最外层电子层。

③价层电子对:

指的是形成σ键的电子对和孤对电子。

孤对电子的存在,增加了电子对间的排斥力,影响了分子中的键角,会改变分子构型的基本类型。

④价层电子对互斥理论基本观点:

分子中的价层电子对---成键电子对(即σ键)和孤对电子由于相互排斥作用,尽可能趋向彼此远离以减小排斥力而采取对称的空间结构。

[一般电子对间的排斥大小:

孤电子对间的排斥(孤-孤排斥)>孤对电子和成键电子对间的排斥(孤-成排斥)>成键电子对间的排斥(成-成排斥)]

说明:

价层电子对互斥理论:

主要是用来分析主族元素形成的分子或离子的结构的,不用来分析以过渡元素为中心的化合物。

(2)根据价层电子对互斥模型判断分子的构型

Ⅰ、价层电子对互斥模型说明的是价层电子对(含孤电子对)的空间构型,而分子的空间构型指的是成键电子对空间构型,不包括孤电子对。

①当中心原子无孤电子对时,两者的构型一致;

②当中心原子有孤电子对时,两者的构型不一致。

Ⅱ、对ABm型分子或离子,其价层电子对数(亦即为杂化轨道数)的判断方法为:

规定:

①作为配位原子,卤素F、Cl、Br、I和H:

价电子1个,氧族:

O、S:

0个;

但作为中心原子,卤素原子按7个价电子计算,氧族元素的原子按6个价电子计算;

②对于复杂离子,应加或减离子的电荷数;例如PO43-应加上3个价电子。

③计算电子对数时,若剩余1个电子,亦当作1对电子处理。

Ⅲ、分子空间构型

价层电子

对数

价电子对排

布或VSEPR

模型及杂化

轨道夹角

成键电子对数(即σ键)

孤对

电子

对数

电子对空

间构型

分子空间

构型

实例

2

sp

直线形

2

0

直线

CO2/BeCl2

 

3

 

sp2

三角形

3

0

平面三角形

CO32-/SO3/BF3/BCl3/CH2O

2

1

V形

O3/SO2/PbCl2/SnBr2

 

4

 

四面体

4

0

四面体形

CCl4/SO42-/NH4+/CH4

sp3

3

1

三角锥形

H3O+/NF3/NH3

2

2

V形

H2O/H2S/SCl2

 

5

 

sp3d

 

三角双锥

(了解)

5

0

三角双锥

PCl5

4

1

变形

四面

SF4

3

2

T形

ClF3

2

3

直线形

I3-

⑶分子构型与杂化轨道理论

杂化轨道的要点

当原子成键时,原子的价电子轨道相互混杂,形成与原轨道数相等且能量相同的杂化轨道。

杂化轨道数不同,轨道间的夹角不同,形成分子的空间形状不同。

⑷分子构型与价层电子对互斥模型

价层电子对互斥模型说明的是价层电子对的空间构型,而分子的空间构型指的是成键电子对空间构型,不包括孤对电子。

①当中心原子无孤对电子时,两者的构型一致;

②当中心原子有孤对电子时,两者的构型不一致。

⑶配位化合物

①配位键与极性键、非极性键的比较

②配位化合物

a定义:

金属离子(或原子)与某些分子或离子(称为配体)以配位键结合形成的化合物。

b组成:

如[Ag(NH3)2]OH,中心离子为Ag+,配体为NH3,配位数为2。

3.分子的性质

⑴分子间作用力的比较

⑵ 分子的极性

(1)极性分子:

正电中心和负电中心不重合的分子。

(2)非极性分子:

正电中心和负电中心重合的分子。

⑶溶解性

① “相似相溶”规律:

非极性溶质一般能溶于非极性溶剂,

极性溶质一般能溶于极性溶剂.若存在氢键,则溶剂和溶质之间的氢键作用力越大,溶解性越好。

②“相似相溶”还适用于分子结构的相似性,如乙醇和水互

溶,而戊醇在水中的溶解度明显减小.

⑷手性

具有完全相同的组成和原子排列的一对分子,如左手和右手一样互为镜像,在三维空间里不能重叠的现象。

⑸无机含氧酸分子的酸性

无机含氧酸可写成(HO)mROn,如果成酸元素R相同,则n值越大,R的正电性越高,使R—O—H中O的电子向R偏移,在水分子的作用下越易电离出H+,酸性越强,如HClO<HClO2<HClO3<HClO4。

三、晶体结构与性质

1.晶体与非晶体

晶体

非晶体

结构特征

结构微粒周期性有序排列

结构微粒无序排列

性质特征

自范性

熔点

固定

不固定

异同表现

各向异性

各向同性

二者区别方法

间接方法

看是否有固定的熔点

科学方法

对固体进行X射线衍射实验

2.得到晶体的途径

(1)熔融态物质凝固。

(2)气态物质冷却不经液态直接凝固(凝华)。

(3)溶质从溶液中析出。

3.晶胞

(1)概念:

描述晶体结构的基本单元。

(2)晶体中晶胞的排列——无隙并置

①无隙:

相邻晶胞之间没有任何间隙。

②并置:

所有晶胞平行排列、取向相同。

4.晶格能

(1)定义:

气态离子形成1摩离子晶体释放的能量,通常取正值,单位:

kJ·mol-1。

(2)影响因素

①离子所带电荷数:

离子所带电荷数越多,晶格能越大。

②离子的半径:

离子的半径越小,晶格能越大。

(3)与离子晶体性质的关系

晶格能越大,形成的离子晶体越稳定,且熔点越高,硬度越大。

【深度思考】

晶胞计算的思维方法

(1)晶胞计算是晶体考查的重要知识点之一,也是考查学生分析问题、解决问题能力的较好素材。

晶体结构的计算常常涉及如下数据:

晶体密度、NA、M、晶体体积、微粒间距离、微粒半径、夹角等,密度的表达式往往是列等式的依据。

解决这类题,一是要掌握晶体“均摊法”的原理,二是要有扎实的立体几何知识,三是要熟悉常见晶体的结构特征,并能融会贯通,举一反三。

(2)“均摊法”原理

特别提醒 在使用均摊法计算晶胞中微粒个数时,要注意晶胞的形状,不同形状的晶胞,应先分析任意位置上的一个粒子被几个晶胞所共有,如六棱柱晶胞中,顶点、侧棱、底面上的棱、面心依次被6、3、4、2个晶胞所共有。

(3)晶体微粒与M、ρ之间的关系

若1个晶胞中含有x个微粒,则1mol晶胞中含有xmol微粒,其质量为xMg(M为微粒的相对“分子”质量);又1个晶胞的质量为ρa3g(a3为晶胞的体积),则1mol晶胞的质量为ρa3NAg,因此有xM=ρa3NA。

四种晶体性质比较

类型

比较

分子晶体

原子晶体

金属晶体

离子晶体

构成粒子

分子

原子

金属阳离子、自由电子

阴、阳离子

粒子间的相互作用力

分子间作用力

共价键

金属键

离子键

硬度

较小

很大

有的很大,有的很小

较大

熔、沸点

较低

很高

有的很高,有的很低

较高

溶解性

相似相溶

难溶于任何溶剂

常见溶剂难溶

大多数易溶于水等极性溶剂

导电、传热性

一般不导电,溶于水后有的导电

一般不具有导电性,个别为半导体

电和热的良导体

晶体不导电,水溶液或熔融态导电

物质类别及举例

所有非金属氢化物(如水、硫化氢)、部分非金属单质(如卤素X2)、部分非金属氧化物(如CO2、SO2)、几乎所有的酸、绝大多数有机物(有机盐除外)

部分非金属单质(如金刚石、硅、晶体硼),部分非金属化合物(如SiC、SiO2)

金属单质与合金(如Na、Al、Fe、青铜)

金属氧化物(如K2O、Na2O)、强碱(如KOH、NaOH)、绝大部分盐(如NaCl)

晶体类型的判断方法

1.依据构成晶体的微粒和微粒间的作用判断

(1)离子晶体的构成微粒是阴、阳离子,微粒间的作用是离子键。

(2)原子晶体的构成微粒是原子,微粒间的作用是共价键。

(3)分子晶体的构成微粒是分子,微粒间的作用为分子间作用力。

(4)金属晶体的构成微粒是金属阳离子和自由电子,微粒间的作用是金属键。

2.依据物质的分类判断

(1)金属氧化物(如K2O)、强碱(如NaOH)和绝大多数的盐类是离子晶体。

(2)大多数非金属单质(除金刚石、石墨、晶体硅等)、非金属氢化物、非金属氧化物(除SiO2外)、几乎所有的酸、绝大多数有机物(除有机盐外)是分子晶体。

(3)常见的单质类原子晶体有金刚石、晶体硅、晶体硼等,常见的化合类原子晶体有碳化硅、二氧化硅等。

(4)金属单质是金属晶体。

3.依据晶体的熔点判断

(1)离子晶体的熔点较高。

(2)原子晶体熔点高。

(3)分子晶体熔点低。

(4)金属晶体多数熔点高,但也有相当低的。

4.依据硬度和机械性能判断

离子晶体硬度较大或硬而脆。

原子晶体硬度大。

分子晶体硬度小且较脆。

金属晶体多数硬度大,但也有较低的,且具有延展性。

注意 

(1)常温下为气态或液态的物质,其晶体应属于分子晶体(Hg除外)。

(2)石墨属于混合型晶体,但因层内原子之间碳碳共价键的键长为1.42×10-10m,比金刚石中碳碳共价键的键长(键长为1.54×10-10m)短,所以熔、沸点高于金刚石。

(3)AlCl3晶体中虽含有金属元素,但属于分子晶体,熔、沸点低(熔点190℃)。

(4)合金的硬度比成分金属大,熔、沸点比成分金属低。

比较晶体的熔、沸点

1.不同类型晶体的熔、沸点高低一般规律

原子晶体>离子晶体>分子晶体。

金属晶体的熔、沸点差别很大,如钨、铂等沸点很高,如汞、镓、铯等沸点很低,金属晶体一般不参与比较。

2.原子晶体

由共价键形成的原子晶体中,原子半径小的键长短,键能大,晶体的熔、沸点高。

如熔点:

金刚石>石英>碳化硅>硅。

3.离子晶体

一般地说,阴、阳离子所带电荷数越多,离子半径越小,则离子间的作用就越强,其离子晶体的熔、沸点就越高,如熔点:

MgO>MgCl2>NaCl>CsCl。

4.分子晶体

(1)分子间作用力越大,物质的熔、沸点越高;具有氢键的分子晶体,熔、沸点反常的高。

如H2O>H2Te>H2Se>H2S。

(2)组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高,如SnH4>GeH4>SiH4>CH4,F2

(3)组成和结构不相似的物质(相对分子质量接近),分子的极性越大,其熔、沸点越高,如CO>N2,CH3OH>CH3CH3。

(4)同分异构体,支链越多,熔、沸点越低。

例如:

CH3—CH2—CH2—CH2—CH3>

>

(5)同分异构体的芳香烃,其熔、沸点高低顺序是邻>间>对位化合物。

5.金属晶体

金属离子半径越小,离子所带电荷数越多,其金属键越强,金属熔、沸点就越高,如熔、沸点:

NaNa>K>Rb>Cs。

特别提醒 

(1)金属晶体的熔、沸点差别很大,如钨、铂等熔点很高,如汞、镓、铯等熔点很低。

(2)金属晶体的熔点不一定比分子晶体的熔点高,如金属晶体Na晶体的熔点(98℃)小于分子晶体AlCl3晶体的熔点(190℃)。

(3)并非存在氢键的分子晶体的熔、沸点就高,分子内形成氢键,一般会使分子晶体的熔、沸点降低。

例如邻羟基苯甲醛(

)由于形成分子内氢键,比对羟基苯甲醛(

)的熔、沸点低。

几种常见的晶体模型

1.原子晶体(金刚石和二氧化硅)

(1)金刚石晶体中,每个C与另外4个C形成共价键,C—C键之间的夹角是109°28′,最小的环是六元环。

含有1molC的金刚石中,形成的共价键有2mol。

(2)SiO2晶体中,每个Si原子与4个O成键,每个O原子与2个硅原子成键,最小的环是十二元环,在“硅氧”四面体中,处于中心的是Si原子。

2.分子晶体

(1)干冰晶体中,每个CO2分子周围等距且紧邻的CO2分子有12个。

(2)冰的结构模型中,每个水分子与相邻的4个水分子以氢键相连接,含1molH2O的冰中,最多可形成2mol“氢键”。

3.离子晶体

(1)NaCl型:

在晶体中,每个Na+同时吸引6个Cl-,每个Cl-同时吸引6个Na+,配位数为6。

每个晶胞含4个Na+和4个Cl-。

(2)CsCl型:

在晶体中,每个Cl-吸引8个Cs+,每个Cs+吸引8个Cl-,配位数为8。

4.石墨晶体

石墨层状晶体中,层与层之间的作用是分子间作用力,平均每个正六边形拥有的碳原子个数是2,C原子采取的杂化方式是sp2。

5.常见金属晶体的原子堆积模型

结构型式

常见金属

配位数

晶胞

面心立方最密堆积A1

Cu、Ag、Au

12

体心立方堆积A2

Na、K、Fe

8

六方最密堆积A3

Mg、Zn、Ti

12

特别提醒 

(1)判断某种微粒周围等距且紧邻的微粒数目时,要注意运用三维想象法。

如NaCl晶体中,Na+周围的Na+数目(Na+用“○”表示):

每个面上有4个,共计12个。

(2)常考的几种晶体主要有干冰、冰、金刚石、SiO2、石墨、CsCl、NaCl、K、Cu等,要熟悉以上代表物的空间结构。

当题中信息给出与某种晶体空间结构相同时,可以直接套用某种结构。

典例1(2018课标Ⅰ)Li是最轻的固体金属,采用Li作为负极材料的电池具有小而轻、能量密度大等优良性能,得到广泛应用。

回答下列问题:

(1)下列Li原子电子排布图表示的状态中,能量最低和最高的分别为_____、_____(填标号)。

A.

B.

C.

D.

(2)Li+与H−具有相同的电子构型,r(Li+)小于r(H−),原因是______。

(3)LiAlH4是有机合成中常用的还原剂,LiAlH4中的阴离子空间构型是______、中心原子的杂化形式为______。

LiAlH4中,存在_____(填标号)。

A.离子键B.σ键C.π键D.氢键

(4)Li2O是离子晶体,其晶格能可通过图(a)的Born−Haber循环计算得到。

可知,Li原子的第一电离能为________kJ·mol−1,O=O键键能为______kJ·mol−1,Li2O晶格能为______kJ·mol−1。

(5)Li2O具有反萤石结构,晶胞如图(b)所示。

已知晶胞参数为0.4665nm,阿伏加德罗常数的值为NA,则Li2O

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1