变速箱制动参数.docx

上传人:b****5 文档编号:6638178 上传时间:2023-01-08 格式:DOCX 页数:14 大小:33.22KB
下载 相关 举报
变速箱制动参数.docx_第1页
第1页 / 共14页
变速箱制动参数.docx_第2页
第2页 / 共14页
变速箱制动参数.docx_第3页
第3页 / 共14页
变速箱制动参数.docx_第4页
第4页 / 共14页
变速箱制动参数.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

变速箱制动参数.docx

《变速箱制动参数.docx》由会员分享,可在线阅读,更多相关《变速箱制动参数.docx(14页珍藏版)》请在冰豆网上搜索。

变速箱制动参数.docx

变速箱制动参数

●变速箱名称

  变速箱是由变速传动机构和操纵机构组成,就是用来传递发动机的输出动力,能变换齿轮的组合以应付不同需求。

  ★功能:

  1.改变传动比,扩大驱动轮转矩和转速的变化范围,以适应经常变化的行驶条件,同时使发动机在有利(功率较高而油耗较低)的工况下工作。

  2.在发动机旋转方向不变情况下,使汽车能倒退行驶。

  3.利用空挡,中断动力传递,以发动机能够起动、怠速,并便于变速箱换档或进行动力输出。

●档位个数

  通常我们常说的变速箱拥有几个档位指的是前进挡的个数,档位是指发动机在转速一定情况下,用来调整变速箱的齿轮比,从而来达到合理的扭矩。

档位个数越多,发动机输出功率的区域划分越细,这样就能让发动机在更小的转速范围内工作,随时保证最佳工作状态,不但可以获得更好的动力输出,还能保证更好的燃油经济性,缺点是档位个数越多结构越复杂,制造成本也相对较高。

  如今变速箱的档位个数基本上在4-8个。

  大部分手动变速箱都是5档或6档,其中5档的比较多,例如:

捷达、思域等;6档的比较少,例如:

卡罗拉、奔腾、1.6T的君威等。

  大部分自动变速箱都是4-6档,比较先进的有7档和8档的。

其中4档的常见车型有:

骐达、悦动、福克斯等;5档的常见车型有:

思域、雅阁、睿翼等;6档常见车型有:

朗逸、君威、迈腾等;7档的常见车型有:

奔驰的诸多车型,高尔夫6代等,8档的车型则非常少了,只有雷克萨斯LS460h、宝马5系GT这两款车型。

●变速箱类型

  根据原理不同,变速箱主要分为:

手动变速箱、自动变速箱、手自一体变速箱、无极变速变速箱和双离合变速箱。

  ◆手动变速箱

  手动变速箱是通过手动选择档位,改变变速箱内的齿轮啮合位置,改变传动比,从而达到变速的目的。

  手动变速箱需要换挡杆与离合器共同操作才能够完成,首先需要踩下离合器,使齿轮分离,然后更换档位,再松开离合器,使齿轮结合。

  手动变速箱是一种比较原始的变速箱,他的优点是成本低,驾驶者能够随心所欲地控制车辆档位,选择合适的档位,控制车辆速度。

缺点是具有一定的驾驶难度,操作相对复杂。

  ◆自动变速箱

  自动变速箱是由液力变扭器、行星齿轮和液压操纵系统组成,通过液力传递和齿轮组合的方式来达到变速的作用。

  自动变速箱能根据油门踏板的深浅和车速变化,自动地变换档位。

优点是操作简便,缺点是动力传递有延迟,反应慢,且制造成本较高。

  ◆手自一体变速箱

  手自一体变速箱实际上就是自动变速箱,只不过加上了手动控制的功能。

他的优点是驾驶者可以人为地强制变速箱升档或降档,更便于超车或节油。

  ◆无极变速箱

  无级变速器采用传动带和工作直径可变的主、从动轮相配合来传递动力,可以实现传动比的连续改变,从而得到传动系与发动机工况的最佳匹配。

其比传统自动变速箱结构简单,体积更小。

另外,它可以自由改变传动比,从而实现全程无级变速,使汽车的车速变化平稳,没有传统变速箱换挡时那种“顿”的感觉。

  无级变速箱的缺点是不能匹配较大扭矩的发动机,所以一般都使用在一些中小型轿车上。

  ◆双离合变速箱:

  双离合变速器应该说是现在最好的变速器解决方案,它基于手动变速箱而又不是自动变速箱,除了拥有手动变速箱的灵活性及自动变速箱的舒适性外,还能提供无间断的动力输出。

●档把类型

  变速器需要用换挡杆来控制档位,而现在车内的换挡杆类型主要有以下几种方式:

  ◆地排式

  最长见的一种换挡杆,80%的车型都采用这种方式。

  ◆怀档式

  现在的怀档式的变档杆都是比较高级的车型才使用,基本上都为电子控制换挡系统,例如奔驰S级、E级等。

  ◆中控台式

  中控台式采用的车型并不多,一般只有少数的MPV才会采用,例如:

昌河铃木浪迪。

  ◆拨片式

  一般的拨片式都是和上三种变速器类型配合使用的,即:

车辆既可以用换挡杆换挡,也可以用方向盘上的拨片换挡。

●前/后制动器类型

  制动器就是刹车,是让行驶中的汽车停止或减速的部件,俗称刹车、闸。

制动器主要由制动架、制动件和操纵装置等组成,有些制动器还装有制动件间隙的自动调整装置。

  制动器主要分为鼓式和盘式,而盘式又分为几种类型,下面为大家简单介绍一下:

  ◆鼓式

  鼓式制动也叫块式制动,是靠制动块在制动轮上压紧来实现刹车的。

现在鼓式制动器的主流是内张式,它的制动块(刹车蹄)位于制动轮内侧,在刹车的时候制动块向外张开,摩擦制动轮的内侧,达到刹车的目的。

  鼓式制动器由于容易产生热衰减,所以现在一般只是用在小型和微型车上,而且只用在后轮上。

  ◆实心盘式

  盘式制动器又称为碟式制动器,顾名思义是取其形状而得名。

它由液压控制,主要零部件有制动盘、分泵、制动钳、油管等。

制动盘用合金钢制造并固定在车轮上,随车轮转动。

分泵固定在制动器的底板上固定不动,制‘动钳上的两个摩擦片分别装在制动盘的两侧,分泵的活塞受油管输送来的液压作用,推动摩擦片压向制动盘发生摩擦制动,动作起来就好像用钳子钳住旋转中的盘子,迫使它停下来一样。

盘式制动器散热快、重量轻、构造简单、调整方便。

特别是高负载时耐高温性能好,制动效果稳定,而且不怕泥水侵袭,在冬季和恶劣路况下行车,盘式制动比鼓式制动更容易在较短的时间内令车停下。

  实心盘式则是制动盘为一块圆形实心的金属做成,所以叫做实心盘式。

  ◆通风盘式

  由于在制动过程中,卡钳和制动盘摩擦会产生大量的热量,使制动盘快速升温而降低制动效果。

  所以通风盘式就诞生了:

车辆在行使当中产生的离心力能使空气对流,达到散热的目的,这是由盘式碟片的特殊构造决定的。

从外表看,它在圆周上有许多通向圆心的洞空,这些洞空是经一种特殊工艺制造而成,因此比普通盘式散热效果要好许多,但是成本也要贵一些,一般中高档轿车才会采用。

  ◆打孔通风盘式

  打孔通风盘是在通风盘基础上对盘面进行打孔,最大程度保证空气流通,降低热衰减。

一般在大功率的跑车上才会才用打孔通风盘。

  ◆陶瓷碳纤维式

  陶瓷碳纤维式就是在打孔通风盘的基础上,在制动盘上加入了极耐热的陶瓷材料。

这样可以提高制动盘的耐高温性,可以有效地减低热衰减,也具有轻量化的特点。

这种制动盘一般只在赛车或者超级跑车上采用,如法拉利F430就采用了这种制动盘。

●手刹类型

  手刹现在主要有以下几种类型:

手拉式、脚踏式、电子式。

  ◆手拉式

  手拉式是最常见的一种手刹类型,大部分车型都采用这种方式。

手拉式手刹位于前排座椅中间,像上拉起为上锁。

  ◆脚踏式

  脚踏式手刹一般在车辆左边,分两种方式:

一种是拉紧和松开都是脚踩,另一种是拉紧用脚踩,松开用手拉。

很多美国车都采用脚踩式手刹。

  ◆电子式

  电子手刹也就是电子驻车制动系统。

电子驻车制动系统是指将行车过程中的临时性制动和停车后的长时性制动功能整合在一起,并且由电子控制方式实现停车制动的技术。

是由电子控制方式实现停车制动的技术。

  其工作原理与机械式手刹相同,均是通过刹车盘与刹车片产生的摩擦力来达到控制停车制动,只不过控制方式从之前的机械式手刹拉杆变成了电子按钮。

  现在很多高档车都开始采用电子式手刹。

  v前/后轮毂规格

  轮毂就是轮胎钢圈,是在车轮的中心部分,有圆孔可以插在驱动轴上。

轮毂的造型是否美观,很多时候可以起到画龙点睛的作用。

轮毂是有一定规格的,例如6.5J×16则表示:

轮毂的宽度为6.5英寸,J表示轮缘的轮廓,轮毂的直径为16英寸。

 制动器(brakestaff)可以分两大类,工业制动器和汽车制动器汽车制动器又分为行车制动器(脚刹),驻车制动器(手刹)。

在行车过程中,一般都采用行车制动(脚刹),便于在前进的过程中减速停车,不单是使汽车保持不动。

若行车制动失灵时才采用驻车制动。

当车停稳后,就要使用驻车制动(手刹),防止车辆前滑和后溜。

停车制动器

后一般除使用驻车制动外,上坡要将档位挂在一档(防止后溜),下坡要将档位挂在倒档(防止前滑)。

  使机械运转部件停止或减速所必须施加的阻力矩称为制动力矩。

制动力矩是设计、选用制动器的依据,其大小由机械的型式和工作要求决定。

制动器上所用摩擦材料(制动件)的性能直接影响制动过程,而影响其性能的主要因素为工作温度和温升速度。

摩擦材料应具备高而稳定的摩擦系数和良好的耐磨性。

摩擦材料分金属和非金属两类。

前者常用的有铸铁、钢、青铜和粉末冶金摩擦材料等,后者有皮革、橡胶、木材和石棉等。

  起重机用制动器对于起重机来说既是工作装置,又是安全装置,制动器在起升机构中,是将提升或下降的货物能平稳的停止在需要的高度,或者控制提升或下降的速度,在运行或变幅等机构中,制动器能够让机构平稳的停止在需要的位置。

分类

摩擦

  ①摩擦式制动器。

靠制动件与运动件之间的摩擦力制动。

  ②非摩擦式制动器。

制动器的结构形式主要有磁粉制动器(利用磁粉磁化所产生的剪力来制动)、磁涡流制动器(通过调节励磁电流来调节制动力矩的大小)以及水涡流制动器等。

按制动件的结构形式

  又可分为外抱块式制动器、内张蹄式制动器、带式制动器、盘式制动器等;

按制动件所处工作状态

  还可分为常闭式制动器(常处于紧闸状态,需施加外力方可解除制动)和常开式制动器(常处于松闸状态,需施加外力方可制动);

按操纵方式

  也可分为人力、液压、气压和电磁力操纵的制动器。

按制动系统的作用

  制动系统可分为行车制动系统、驻车制动系统、应急制动系统及辅助制动系统等。

上述各制动系统中,行车制动系统和驻车制动系统是每一辆汽车都必须具备的。

制动操纵能源

  制动系统可分为人力制动系统、动力制动系统和伺服制动系统等。

以驾驶员的肌体作为唯一制动能源的制动系统称为人力制动系统;完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的系统称为动力制动系统;兼用人力和发动机动力进行制动的制动系统称为伺服制动系统或助力制动系统。

按制动能量的传输方式

  制动系统可分为机械式、液压式、气压式、电磁式等多种。

同时采用两种以上传能方式的制动系称为组合式制动系统。

制动系统的一般工作原理

  制动系统的一般工作原理是,利用与车身(或车架)相连的非旋转元件和与车轮(或传动轴)相连的旋转元件之间的相互摩擦来阻止车轮的转动或转动的趋势。

  可用一种简单的液压制动系统示意图来说明制动系统的工作原理。

一个以内圆面为工作表面的金属制动制动系统工作原理示意图

鼓固定在车轮轮毂上,随车轮一同旋转。

在固定不动的制动底板上,有两个支承销,支承着两个弧形制动蹄的下端。

制动蹄的外圆面上装有摩擦片。

制动底板上还装有液压制动轮缸,用油管5与装在车架上的液压制动主缸相连通。

主缸中的活塞3可由驾驶员通过制动踏板机构来操纵。

  当驾驶员踏下制动踏板,使活塞压缩制动液时,轮缸活塞在液压的作用下将制动蹄片压向制动鼓,使制动鼓减小转动速度,或保持不动。

  使机械运转部件停止或减速所必须施加的阻力矩称为制动力矩。

制动力矩是设计、选用制动器的依据,其大小由机械的型式和工作要求决定。

制动器上所用摩擦材料(制动件)的性能直接影响制动过程,而影响其性能的主要因素为工作温度和温升速度。

摩擦材料应具备高而稳定的摩擦系数和良好的耐磨性。

摩擦材料分金属和非金属两类。

前者常用的有铸铁、钢、青铜和粉末冶金摩擦材料等,后者有皮革、橡胶、木材和石棉等。

  在了解某款车型的刹车系统时,您可能经常会听到“前盘后鼓”或“前碟后鼓”这四个字,那么,它到底是什么意思呢?

最近就有读者通过电子邮件询问有关汽车制动系统的问题,比如盘式制动器和鼓式制动器的区别,通风盘和实心盘的不同之处等等。

  目前车市中很多发动机排量较小的中低档车型,其制动系统大多采用“前盘后鼓式”,即前轮采用盘式制动器,后轮采用鼓式制动器,比如常见的一汽大众捷达、长安铃木奥拓及羚羊、比亚迪福莱尔、东风悦达起亚千里马、上海通用赛欧等等。

我们先来简单了解一下后轮经常采用的鼓式制动器。

  实际应用差别很明显,盘刹比鼓刹好用。

刹车鼓中的石棉材料会致癌。

鼓刹与盘刹各有利弊。

在刹车效果上,鼓刹与盘刹的相差并不大,因为刹车时,是轮胎和地面的摩擦力让车子逐渐停止下来的。

如果车身小巧,车身重量轻,后轮采用鼓刹就足以使轮胎和地面产生足够的摩擦力了。

如果后轮使用盘刹,ABS和EBD系统也会自动降低其刹车力度,以保证后轮不会失去抓地力出现打滑、抱死现象。

  散热性上,盘刹要比鼓刹散热快,通风盘刹的散热效果更好;在灵敏度上,盘刹会更高些,不过在下雨天道路泥泞的情况下当刹盘沾了泥沙后刹车效果就会大打折扣,这也是盘刹的缺点;费用方面,鼓刹较盘刹更低,而且使用寿命更长,因此一些中低档车多会采用鼓刹,中高档以上的车型基本采取四轮盘刹。

  汽车设计者从经济与实用的角度出发,一般轿车采用了混合的形式,前轮盘式制动,后轮鼓式制动。

四轮轿车在制动过程中,由于惯性的作用,前轮的负荷通常占汽车全部负荷的70%-80%,因此前轮制动力要比后轮大。

轿车生产厂家为了节省成本,就采用前轮盘式制动,后轮鼓式制动的方式。

四轮盘式制动的中高级轿车,采用前轮通风盘式制动是为了更好地散热,至于后轮采用非通风盘式同样也是成本的原因。

毕竟通风盘式的制造工艺要复杂得多,价格也就相对贵了。

随着材料科学的发展及成本的降低,在轿车领域中,盘式制动有逐渐取代鼓式制动的趋向。

  一般制动器都是通过其中的固定元件对旋转元件施加制动力矩,使后者的旋转角速度降低,同时依靠车轮与地面的附着作用,产生路面对车轮的制动力以使汽车减速。

凡利用固定元件与旋转元件工作表面的摩擦而产生制动力矩的制动器都成为摩擦制动器。

目前汽车所用的摩擦制动器可分为鼓式和盘式两大类。

  旋转元件固装在车轮或半轴上,即制动力矩直接分别作用于两侧车轮上的制动器称为车轮制动器。

旋转元件固装在传动系的传动轴上,其制动力矩经过驱动桥再分配到两侧车轮上的制动器称为中央制动器。

块式制动器组成

  起重机用制动器由制动瓦块、制动臂、制动轮和松闸器组成。

常把制动轮作为联轴器的一个半体安装在机构的转动轴上,对称布置的制动臂与机架固定部分铰连,内侧附有摩擦材料的两个制动瓦块分别活动铰接在两制动臂上,在松闸器上闸力的作用下,成对的制动瓦块在径向抱紧制动轮而产生制动力矩。

  在接通电源时,电磁松闸器的铁心吸引衔铁压向推杆,推杆推动左制动臂向左摆,主弹簧被压缩。

同时,解除压力的辅助弹簧将右制动臂向右推,两制动臂带动制动瓦块与制动轮分离,机构可以运动。

当切断电源时,铁心失去磁性,对衔铁的吸引力消除,因而解除衔铁对推杆的压力,在主弹簧张力的作用下,两制动臂一起向内收摆,带动制动瓦块抱紧制动轮产生制动力矩;同时,辅助弹簧被压缩。

制动力矩由主弹簧力决定,辅助弹簧保证松间间隙。

块式制动器的制动性能在很大程度上是由松闸器的性能决定的。

制动系

功用

  使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已停驶的汽车保持不动,这些作用统称为制动;汽车上装设的一系列专门装置,以便驾驶员能根据道路和交通等情况,借以使外界(主要是路面)在汽车某些部分(主要是车轮)施加一定的力,对汽车进行一定程度的制动,这种可控制的对汽车进行制动的外力称为制动力;这样的一系列专门装置即称为制动系。

  这种用以使行驶中的汽车减速甚至停车的制动系称为行车制动系;用以使已停驶的汽车驻留原地不动的装置,称为驻车制动系。

这两个制动系是每辆汽车必须具备的。

组成部分

  任何制动系都具有以下四个基本组成部分:

  1)供能装置,包括供给、调节制动所需能量以及改善传能介质状态的各种部件。

  2)控制装置,包括产生制动动作和控制制动效果的各种部件。

  3)传动装置,包括将制动能量传输到制动器的各个部件  4)制动器,产生阻碍车辆的运动或运动趋势的力(制动力)的部件,其中包括辅助制动系中的缓速装置。

分类

  按制动能源来分类,行车制动系可分为,以驾驶员的肌体作为唯一制动能源的制动系称为人力制动系;完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的则是动力制动系,其制动源可以是发动机驱动的空气压缩机或油泵;兼用人力和发动机动力进行制动的制动系称为伺服制动系。

  驻车制动系可以是人力式或动力式。

专门用于挂车的还有惯性制动系和重力制动系。

  按照制动能量的传输方式,制动系可分为机械式、液压式、气压式和电磁式等。

同时采用两种以上传能方式的制动系可称为组合式制动系。

鼓式制动器

  简介 鼓式制动也叫块式制动,是靠制动块在制动轮上压紧来实现刹车的。

鼓式制动是早期设计的制动系统,其刹车鼓的设计1902年就已经使用在马车上了,直到1920年左右才开始在汽车工业广泛应用。

现在鼓式制动器的主流是内张式,它的制动块(刹车蹄)位于制动轮内侧,在刹车的时候制动块向外张开,摩擦制动轮的内侧,达到刹车的目的。

相对于盘式制动器来说,鼓式制动器的制动效能和散热性都要差许多,鼓式制动器的制动力稳定性差,在不同路面上制动力变化很大,不易于掌控。

而由于散热性能差,在制动过程中会聚集大量的热量。

制动块和轮鼓在高温影响下较易发生极为复杂的变形,容易产生制动衰退和振抖现象,引起制动效率下降。

另外,鼓式制动器在使用一段时间后,要定期调校刹车蹄的空隙,甚至要把整个刹车鼓拆出清理累积在内的刹车粉。

当然,鼓式制动器也并非一无是处,它造价便宜,而且符合传统设计。

四轮轿车在制动过程中,由于惯性的作用,前轮的负荷通常占汽车全部负荷的70%-80%,前轮制动力要比后轮大,后轮起辅助制动作用,因此轿车生产厂家为了节省成本,就采用前盘后鼓的制动方式。

不过对于重型车来说,由于车速一般不是很高,刹车蹄的耐用程度也比盘式制动器高,因此许多重型车至今仍使用四轮鼓式的设计。

  优点 自刹作用:

鼓式刹车有良好的自刹作用,由于刹车来令片外张,车轮旋转连带着外张的刹车鼓扭曲一个角度(当然不会大到让你很容易看得出来)刹车来令片外张力(刹车制动力)越大,则情形就越明显,因此,一般大型车辆还是使用鼓式刹车,除了成本较低外,大型车与小型车的鼓刹,差别可能祗有大型采气动辅助,而小型车采真空辅助来帮助刹车。

成本较低:

鼓式刹车制造技术层次较低,也是最先用于刹车系统,因此制造成本要比碟式刹车低。

  缺点 由于鼓式刹车刹车来令片密封于刹车鼓内,造成刹车来令片磨损后的碎削无法散去,影响刹车鼓与来令片的接触面而影响刹车性能。

鼓刹最大的缺点是下雨天沾了雨水后会打滑,造成刹车失灵这才是其最可怕的领从蹄式制动器增势与减势作用,设汽车前进时制动鼓旋转方向(这称为制动鼓正向旋转)。

制动蹄1的支承点3在其前端,制动轮缸6所施加的促动力作用于其后端,因而该制动蹄张开时的旋转方向与制动鼓的旋转方向相同。

具有这种属性的制动蹄称为领蹄。

与此相反,制动蹄2的支承点4在后端,促动力加于其前端,其张开时的旋转方向与制动鼓的旋转方向相反。

具有这种属性的制动蹄称为从蹄。

当汽车倒驶,即制动鼓反向旋转时,蹄1变成从蹄,而蹄2则变成领蹄。

这种在制动鼓正向旋转和反向旋转时,都有一个领蹄和一个从蹄的制动器即称为领从蹄式制动器。

制动时两活塞施加的促动力是相等的。

因此在制动过程中对制动鼓产生一个附加的径向力。

凡制动鼓所受来自二蹄的法向力不能互相平衡的制动器称为非平衡式制动器。

单向双领蹄式制动器在制动鼓正向旋转时,两蹄均为领蹄的制动器称为双领蹄式制动器,其结构示意图如右图所示。

双领蹄式制动器与领从蹄式制动器在结构上主要有两点不相同,一是双领蹄式制动器的两制动蹄各用一个单活塞式轮缸,而领从蹄式制动器的两蹄共用一个双活塞式轮缸;二是双领蹄式制动器的两套制动蹄、制动轮缸、支承销在制动底板上的布置是中心对称的,而领从蹄式制动器中的制动蹄、制动轮缸、支承销在制动底板上的布置是轴对称布置的。

双向双领蹄式制动器无论是前进制动还是倒车制动,两制动蹄都是领蹄的制动器称为双向双领蹄式制动器,图5-42是其结构示意图器。

与领从蹄式制动器相比,双向双领蹄式制动器在结构上有三个特点,一是采用两个双活塞式制动轮缸;二是两制动蹄的两端都采用浮式支承,且支点的周向位置也是浮动的;三是制动底板上的所有固定元件,如制动蹄、制动轮缸、回位弹簧等都是成对的,而且既按轴对称、又按中心对称布置。

双从蹄式制动器前进制动时两制动蹄均为从蹄的制动器称为双从蹄式制动器,其结构示意图见图5-44。

这种制动器与双领蹄式制动器结构很相似,二者的差异只在于固定元件与旋转元件的相对运动方向不同。

虽然双从蹄式制动器的前进制动效能低于双领蹄式和领从蹄式制动器,但其效能对摩擦系数变化的敏感程度较小,即具有良好的制动效能稳定性。

双领蹄、双向双领蹄、双从蹄式制动器的固定元件布置都是中心对称的。

如果间隙调整正确,则其制动鼓所受两蹄施加的两个法向合力能互相平衡,不会对轮毂轴承造成附加径向载荷。

因此,这三种制动器都属于平衡式制动器。

单向自增力式制动器单向自增力式制动器的结构原理见右图。

第一制动蹄1和第二制动蹄2的下端分别浮支在浮动的顶杆6的两端。

汽车前进制动时,单活塞式轮缸将促动力FS1加于第一蹄,使其上压靠到制动鼓3上。

第一蹄是领蹄,并且在各力作用下处于平衡状态。

顶杆6是浮动的,将与力S1大小相等、方向相反的促动力FS2施于第二蹄。

故第二蹄也是领蹄。

作用在第一蹄上的促动力和摩擦力通过顶杆传到第二蹄上,形成第二蹄促动力FS2。

对制动蹄1进行受力分析可知,FS2>FS1。

此外,力FS2对第二蹄支承点的力臂也大于力FS1对第一蹄支承的力臂。

因此,第二蹄的制动力矩必然大于第一蹄的制动力矩。

倒车制动时,第一蹄的制动效能比一般领蹄的低得多,第二蹄则因未受促动力而不起制动作用。

双向自增力式制动器双向自增力式制动器的结构原理如图5-47所示。

其特点是制动鼓正向和反向旋转时均能借蹄鼓间的摩擦起自增力作用。

它的结构不同于单向自增力式之处主要是采用双活塞式制动轮缸4,可向两蹄同时施加相等的促动力FS。

制动鼓正向(如箭头所示)旋转时,前制动蹄1为第一蹄,后制动蹄3为第二蹄;制动鼓反向旋转时则情况相反。

在制动时,第一蹄只受一个促动力FS而第二蹄则有两个促动力FS和S,且S>FS。

考虑到汽车前进制动的机会远多于倒车制动,且前进制动时制动器工作负荷也远大于倒车制动,故后蹄3的摩擦片面积做得较大。

凸轮式制动器目前,所有国产汽车及部分外国汽车的气压制动系统中,都采用凸轮促动的车轮制动器,而且大多设计成领从蹄式。

制动时,制动调整臂在制动气室6的推杆作用下,带动凸轮轴转动,使得两制动蹄压靠到制动鼓上而制动。

由于凸轮轮廓的中心对称性及两蹄结构和安装的轴对称性,凸轮转动所引起的两蹄上相应点的位移必然相等。

这种由轴线固定的凸轮促动的领从蹄式制动器是一种等位移式制动器,制动鼓对制动蹄的摩擦使得领蹄端部力图离开制动凸轮,从蹄端部更加靠紧凸轮。

因此,尽管领蹄有助势作用,从蹄有减势作用,但对等位移式制动器而言,正是这一差别使得制动效能高的领蹄的促动力小于制动效能低的从蹄的促动力,从而使得两蹄的制动力矩相等。

楔式制动器楔式制动器中两蹄的布置可以是领从蹄式。

作为制动蹄促动件的制动楔本身的促动装置可以是机械式、液压式或气压式。

两制动蹄端部的圆弧面分别浮支在柱塞3和柱塞6的外端面直槽底面上。

柱塞3和6的内端面都是斜面,与支于隔架5两边槽内的滚轮4接触。

制动时,轮缸活塞15在液压作用下推使制动楔13向内移动。

后者又使二滚轮一面沿柱塞斜面向内滚动,一面推使二柱塞3和6在制动底板7的孔中外移一定距离,从而使制动蹄压靠到制动鼓上。

轮缸液压一旦撤除,这一系列零件即在制动蹄回位弹簧的作用下各自回位。

导向销1和10用以防止两柱塞转动。

鼓式制动器小结以上介绍的各种鼓式制动器各有利弊。

就制动效能而言,在基本结构参数和轮缸工作压力相同的条件下,自增力式制动器由于对摩擦助势作用利用得最为充分而居首位,以下依次为双领蹄式、领从蹄式、双从蹄式。

但蹄鼓之间的摩擦系数本身是

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1