锂离子电池工艺流程.docx

上传人:b****5 文档编号:6628257 上传时间:2023-01-08 格式:DOCX 页数:7 大小:19.77KB
下载 相关 举报
锂离子电池工艺流程.docx_第1页
第1页 / 共7页
锂离子电池工艺流程.docx_第2页
第2页 / 共7页
锂离子电池工艺流程.docx_第3页
第3页 / 共7页
锂离子电池工艺流程.docx_第4页
第4页 / 共7页
锂离子电池工艺流程.docx_第5页
第5页 / 共7页
点击查看更多>>
下载资源
资源描述

锂离子电池工艺流程.docx

《锂离子电池工艺流程.docx》由会员分享,可在线阅读,更多相关《锂离子电池工艺流程.docx(7页珍藏版)》请在冰豆网上搜索。

锂离子电池工艺流程.docx

锂离子电池工艺流程

锂离子电池工艺流程

正极混料

●原料的掺和:

(1)粘合剂的溶解(按标准浓度)及热处理。

(2)钴酸锂和导电剂球磨:

使粉料初步混合,钴酸锂和导电剂粘合在一起,提高团聚作用和的导电性。

配成浆料后不会单独分布于粘合剂中,球磨时间一般为2小时左右;为避免混入杂质,通常使用玛瑙球作为球磨介子。

●干粉的分散、浸湿:

(1)原理:

固体粉末放置在空气中,随着时间的推移,将会吸附部分空气在固体的表面上,液体粘合剂加入后,液体与气体开始争夺固体表面;如果固体与气体吸附力比与液体的吸附力强,液体不能浸湿固体;如果固体与液体吸附力比与气体的吸附力强,液体可以浸湿固体,将气体挤出。

当润湿角≤90度,固体浸湿。

当润湿角>90度,固体不浸湿。

正极材料中的所有组员都能被粘合剂溶液浸湿,所以正极粉料分散相对容易。

(2)分散方法对分散的影响:

A、静置法(时间长,效果差,但不损伤材料的原有结构);

B、搅拌法;自转或自转加公转(时间短,效果佳,但有可能损伤个别

材料的自身结构)。

1、搅拌桨对分散速度的影响。

搅拌桨大致包括蛇形、蝶形、球形、桨形、齿轮形等。

一般蛇形、蝶形、桨型搅拌桨用来对付分散难度大的材料或配料的初始阶段;球形、齿轮形用于分散难度较低的状态,效果佳。

2、搅拌速度对分散速度的影响。

一般说来搅拌速度越高,分散速度越快,但对材料自身结构和对设备的损伤就越大。

3、浓度对分散速度的影响。

通常情况下浆料浓度越小,分散速度越快,但太稀将导致材料的浪费和浆料沉淀的加重。

4、浓度对粘结强度的影响。

浓度越大,柔制强度越大,粘接强度

越大;浓度越低,粘接强度越小。

5、真空度对分散速度的影响。

高真空度有利于材料缝隙和表面的气体排出,降低液体吸附难度;材料在完全失重或重力减小的情况下分散均匀的难度将大大降低。

6、温度对分散速度的影响。

适宜的温度下,浆料流动性好、易分散。

太热浆料容易结皮,太冷浆料的流动性将大打折扣。

●稀释。

将浆料调整为合适的浓度,便于涂布。

1.1原料的预处理

(1)钴酸锂:

脱水。

一般用120oC常压烘烤2小时左右。

(2)导电剂:

脱水。

一般用200oC常压烘烤2小时左右。

(3)粘合剂:

脱水。

一般用120-140oC常压烘烤2小时左右,烘烤温度视分子量的大小决定。

(4)NMP:

脱水。

使用干燥分子筛脱水或采用特殊取料设施,直接使用。

2.1.2物料球磨

a)将LiCoO2Super-P倒入料桶,同时加入磨球(干料:

磨球=1:

1),在滚瓶及上进行球磨,转速控制在60rmp以上;

b)4小时结束,过筛分离出球磨;

1.3操作步骤

a)将NMP倒入动力混合机(100L)至80℃,称取PVDF加入其中,开机;

参数设置:

转速25±2转/分,搅拌115-125分钟;

b)接通冷却系统,将已经磨号的正极干料平均分四次加入,每次间隔28-32分钟,第三次加料视材料需要添加NMP,第四次加料后加入NMP;

动力混合机参数设置:

转速为20±2转/分

c)第四次加料30±2分钟后进行高速搅拌,时间为480±10分钟;

动力混合机参数设置:

公转为30±2转/分,自转为25±2转/分;

a)真空混合:

将动力混合机接上真空,保持真空度为-0.09Mpa,搅拌30±2分钟;

动力混合机参数设置:

公转为10±2分钟,自转为8±2转/分

b)取250-300毫升浆料,使用黏度计测量黏度;

测试条件:

转子号5,转速12或30rpm,温度范围25℃;

c)将正极料从动力混合机中取出进行胶体磨、过筛,同时在不锈钢盆上贴上标识,与拉浆设备操作员交接后可流入拉浆作业工序。

1.4注意事项

a)完成,清理机器设备及工作环境;

b)操作机器时,需注意安全,避免砸伤头部。

2负极混料

2.1原料的预处理:

(1)石墨:

A、混合,使原料均匀化,提高一致性。

B、300~400℃常压烘烤,除去表面油性物质,提高与水性粘合剂的相容能力,修圆石墨表面棱角(有些材料为保持表面特性,不允许烘烤,否则效能降低)。

(2)水性粘合剂:

适当稀释,提高分散能力。

★掺和、浸湿和分散:

(1)石墨与粘合剂溶液极性不同,不易分散。

(2)可先用醇水溶液将石墨初步润湿,再与粘合剂溶液混合。

(3)应适当降低搅拌浓度,提高分散性。

(4)分散过程为减少极性物与非极性物距离,提高势能或表面能,所以为吸热反应,搅拌时总体温度有所下降。

如条件允许应该适当升高搅拌温度,使吸热变得容易,同时提高流动性,降低分散难度。

(5)搅拌过程如加入真空脱气过程,排除气体,促进固-液吸附,效果更佳。

(6)分散原理、分散方法同正极配料中的相关内容

★稀释:

将浆料调整为合适的浓度,便于涂布。

2.2物料球磨

a)将负极和Super-P倒入料桶同时加入球磨(干料:

磨球=1:

1.2)在滚瓶及上进行球磨,转速控制在60rmp以上;

b)4小时结束,过筛分离出球磨;

2.3操作步骤

a)纯净水加热至至80℃倒入动力混合机(2L)

b)加CMC,搅拌60±2分钟;

动力混合机参数设置:

公转为25±2分钟,自转为15±2转/分;

c)加入SBR和去离子水,搅拌60±2分钟;

动力混合机参数设置:

公转为30±2分钟,自转为20±2转/分;

d)负极干料分四次平均顺序加入,加料的同时加入纯净水,每次间隔28-32分钟;

动力混合机参数设置:

公转为20±2转/分,自转为15±2转/分;

e)第四次加料30±2分钟后进行高速搅拌,时间为480±10分钟;

动力混合机参数设置:

公转为30±2转/分,自转为25±2转/分;

f)真空混合:

将动力混合机接上真空,保持真空度为-0.09到0.10Mpa,搅拌30±2分钟;

动力混合机参数设置:

公转为10±2分钟,自转为8±2转/分

g)取500毫升浆料,使用黏度计测量黏度;

测试条件:

转子号5,转速30rpm,温度范围25℃;

h)将负极料从动力混合机中取出进行磨料、过筛,同时在不锈钢盆上贴上标识,与拉浆设备操作员交接后可流入拉浆作业工序。

2.4注意事项

a)完成,清理机器设备及工作环境;

b)操作机器时,需注意安全,避免砸伤头部。

★配料注意事项:

1、防止混入其它杂质;

2、防止浆料飞溅;

3、浆料的浓度(固含量)应从高往低逐渐调整,以免增加麻烦;

4、在搅拌的间歇过程中要注意刮边和刮底,确保分散均匀;

5、浆料不宜长时间搁置,以免沉淀或均匀性降低;

6、需烘烤的物料必须密封冷却之后方可以加入,以免组分材料性质变化;

7、搅拌时间的长短以设备性能、材料加入量为主;搅拌桨的使用以浆料分散难度进行更换,无法更换的可将转速由慢到快进行调整,以免损伤设备;

8、出料前对浆料进行过筛,除去大颗粒以防涂布时造成断带;

9、对配料人员要加强培训,确保其掌握专业知识,以免酿成大祸;

10、配料的关键在于分散均匀,掌握该中心,其它方式可自行调整。

3.电池的制作

3.1极片尺寸

3.2拉浆工艺

a)集流体尺寸

正极(铝箔),间歇涂布

负极(铜箔),间歇涂布

b)拉浆重量要求

电极第一面双面重量(g)面密度(mg/cm2)重量(g)面密度(mg/cm2)

3.3裁片

a)正极拉浆后进行以下工序:

裁大片裁小片称片(配片)烘烤轧片极耳焊接

b)负极拉浆后进行以下工序:

裁大片裁小片称片(配片)烘烤轧片极耳焊接

3.4轧片要求

电极

压片后厚度(mm)

压片后长度(mm)

正极

0.125-0.145

362-365

负极

0.125-0.145

400-403

3.5配片方案

序号

正极重量(克)

负极重量(克)

备注

1

5.49-6.01

2.83-2.86

正极可以和重1-2个档次的负极进行配片

2

6.02-6.09

2.87-2.90

3

6.10-6.17

2.91-2.94

4

6.18-6.25

2.95-2.98

5

6.26-6.33

2.99-3.01

6

6.34-6.41

3.02-3.05

3.6极片烘烤

电极

温度

时间(小时)

真空度

正极

120±5

6-10

≦-0.09Mpa

负极

110±5

6-10

≦-0.09Mpa

备注:

真空系统的真空度为-0.095-0.10Mpa

保护气为高纯氮气,气体气压大于0.5Mpa

3.7极耳制作

正极极耳上盖组合超声波焊接

铝条边缘与极片边缘平齐

负极镍条直接用点焊机点焊,要求点焊数为8个点

镍条右侧与负极片右侧对齐,镍条末端与极片边缘平齐

3.8隔膜尺寸

3.9卷针宽度

3.10压芯

电池卷绕后,先在电芯底部贴上24mm的通明胶带,再用压平机冷压2次;

3.11电芯入壳前要求

胶纸镍条。

3.12装壳

3.13负极极耳焊接

负极镍条与钢壳用点焊机焊接,要保证焊接强度,禁止虚焊

3.14激光焊接

仔细上号夹具,电池壳与上盖配合良好后才能进行焊接,注意避免出现焊偏

3.15电池真空烘烤

温度

时间

真空度

80±5℃

16-22小时

≦-0.05Mpa

备注:

a)真空系统的真空度为-0.095~0.10Mpa

b)保护气为高纯氮气,气体气压大于0.5Mpa

c)每小时抽一次真空注一次氮气;

3.16注液量:

2.9±0.1g

注液房相对湿度:

小于30%

温度:

20±5℃

封口胶布:

宽红色胶布。

粘胶布时注意擦净注液口的电解液

用2道橡皮筋将棉花固定在注液口处

3.17化成制度

3.17.1开口化成工艺

a)恒流充电:

40mA*4h80mA*6h

电压限制:

4.00V

b)全检电压,电压大于3.90V的电池进行封口,电压小于3.90V的电池接着用60mA恒流至3.90-4.00后封口,再打钢珠;

c)电池清洗,清洗剂为醋酸+酒精

3.17.2续化成制度

a)恒流充电(400mA,4.20V,10min)

b)休眠(2min)

c)恒流充电(400mA,4.20V,100min)

d)恒压充电(4.20V,20mA,150min)

e)休眠(30min)

f)恒流放电(750mA,2.75V,80min)

g)休眠(30min)

h)恒流充电(750mA,3.80V,90min)

i)恒压充电(3.80V,20mA,150min)

当从LiCoO2拿走XLi后,其结构可能发生变化,但是否发生变化取决于X的大小。

通过研究发现当X>0.5时Li1-XCoO2的结构表现为极其不稳定,会发生晶型瘫塌,其外部表现为电芯的压倒终结。

所以电芯在使用过程中应通过限制充电电压来控制Li1-XCoO2中的X值,一般充电电压不大于4.2V那么X小于0.5,这时Li1-XCoO2的晶型仍是稳定的。

负极C6其本身有自己的特点,当第一次化成后,正极LiCoO2中的Li被充到负极C6中,当放电时Li回到正极LiCoO2中,但化成之后必须有一部分Li留在负极C6中,心以保证下次充放电Li的正常嵌入,否则电芯的压倒很短,为了保证有一部分Li留在负极C6中,一般通过限制放电下限电压来实现:

安全充电上限电压≤4.2V,放电下限电压≥2.5V。

4.包装与储存

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1