混凝土梁柱联接部位的加固英文翻译.docx

上传人:b****6 文档编号:6571264 上传时间:2023-01-08 格式:DOCX 页数:23 大小:387.43KB
下载 相关 举报
混凝土梁柱联接部位的加固英文翻译.docx_第1页
第1页 / 共23页
混凝土梁柱联接部位的加固英文翻译.docx_第2页
第2页 / 共23页
混凝土梁柱联接部位的加固英文翻译.docx_第3页
第3页 / 共23页
混凝土梁柱联接部位的加固英文翻译.docx_第4页
第4页 / 共23页
混凝土梁柱联接部位的加固英文翻译.docx_第5页
第5页 / 共23页
点击查看更多>>
下载资源
资源描述

混凝土梁柱联接部位的加固英文翻译.docx

《混凝土梁柱联接部位的加固英文翻译.docx》由会员分享,可在线阅读,更多相关《混凝土梁柱联接部位的加固英文翻译.docx(23页珍藏版)》请在冰豆网上搜索。

混凝土梁柱联接部位的加固英文翻译.docx

混凝土梁柱联接部位的加固英文翻译

 

本科毕业设计(论文)

英文专题

 

专业名称:

土木矿建

年级班级:

土木单招06-1班

学生姓名:

XXX

指导教师:

余永强

 

河南理工大学土木工程学院

二○一○年六月十日

Reinforcementofconcretebeam–columnconnectionswithhybridFRPsheet

AbstractThepaperdescribestheresultsoftestsonprototypesizereinforcedconcreteframespecimenswhichweredesignedtorepresentthecolumn–beamconnectionsinplaneframes.Thetestsweredevisedtoinvestigatetheinfluenceoffibrereinforcedplastic(FRPreinforcementappliedtoexternalsurfacesadjacenttothebeam–columnconnectiononthebehaviourofthetestspecimensunderstaticloading.OfparticularinterestunderstaticloadingwastheinfluenceofFRPreinforcementonthestrengthandstiffnessofbeam–columnconnection.Asakeytothestudy,thehybridFRPcompositesofE-glasswovenroving(WR)andplaincarboncloth,combinedwithchoppedstrandmat(CSM),glassfibertape(GFT)withavinyl-esterresinweredesignedtoexternallyreinforcethejointoftheconcreteframe.TheresultsshowthatretrofittingcriticalsectionsofconcreteframeswithFRPreinforcementcanprovidesignificationstrengtheningandstiffeningtoconcreteframesandimprovetheirbehaviourunderdifferenttypesofloading.TheselectionsoftypesofFRPandthearchitectureofcompositesinordertoimprovethebondingandstrengthoftheretro-fittingwerealsodiscussed.

AuthorKeywords:

Concretestructure;Strengthening;Rehabilitation;HybridFRPcomposite;Wrappingtechnique

1.Introduction

Awidelyadoptedtechniqueforretrofittingconcretestructureistousesteeljacketsplacedaroundexistingconcretecolumns[1and2].Theuseofsteelencasementtoprovidelateralconfinementtotheconcreteincompressionhasbeenstudiedextensively[3and4],andhasshownincreaseinthecompressionloadcarryingcapacityandductilityoftheconcretecolumns.However,theshortcomingsofthistechniquearethatitsuffersfromcorrosionsaswellasinherentdifficultiesduringpracticalapplications.Fibrereinforcedplastic(FRP),ontheotherhand,isincreasinglybeingusedtoreinforceconcrete,masonryandtimberstructures.TheloadcarryingcapacityandserviceabilityofexistingstructurescanbesignificantlyaugmentedthroughexternallyretrofittingcriticalsectionswithFRPsheeting.InrecentyearsFRPmaterialswithwiderangeoffibretypesofglass,aramidorcarbonprovidedesignerswithanadaptableandcost-effectiveconstructionmaterialwithalargerangeofmodulusandstrengthcharacteristics.Comparingwithtraditionalrehabilitationtechniques,theFRPcompositeshavehighspecificstrength/stiffness,flexibilityindesignandreplacementaswellasrobustnessinunfriendlyenvironments.WithFRPcompositesitispossibleandalsonecessarytoachievethebeststrengtheningresultsbyoptimisingtheconstitutematerialsandarchitecture.OptimisationoftheconstitutematerialsandarchitecturebecomesessentialinordertoutilisethesuperiorityofFRPcompositesinapplicationofrehabilitation[5,6,7,8and9].Itwasfoundthatwindingofcarbonfiber/epoxycompositesaroundsquareconcretecolumnscanincreasetheloadcarryingcapacityby8–22%,dependingontheamountoffibresusedandtreatmentsofsubstratesurface[10].Theuseofresininfusiontechniquewasshowntocontributetosubstantialimprovementsincompositewrappingefficiency,andtheuseofwovenglassroving,asthereinforcementincompositeswrapping,wasfoundtosignificantlyincreasebothloadcarryingcapacityanddeformationresistancecapacityoftheconcretestubs[2].Furthermore,throughtheuseofglass/carbonhybridreinforcementswithanepoxyresin,replicationofinitialperformanceofconcretestubssubjectedtodeteriorationwasshownpossible,withasimultaneousfurtherimprovementinloadcarryingcapacity.Intermsoftheeffectsoforientationandthicknessofthecompositeswarps,itwasfoundthatthepredominantuseofreinforcementsinthehoopdirectionwouldresultinhighefficiency[11].Despitethelargenumberofresearchcarriedout,oneshortcomingofmoststudieshasbeenthattheywerelimitedtosimplesmallsizecomponents,suchasconcretecylinders,ratherthanrealstructures.Furthermore,itisessentialtostudytheoptimisationofcompositesarchitecturesintermsofcosteffectivenessincludingmaterialsandprocessingmethods.ThisimpliesthatthereinforcementofinfrastructurewithFRPcompositesshouldutilisetheadvantagesofvariousmaterials,notonlycarbonfiberswithepoxyresin,butalsoglassfiberorhybridofcarbon/glassfibreswithotherpolymerresins.Inthisexperimentalinvestigation,ahybridofcarbon/E-glasswithvinyl-esterresincompositesjacketwasdesignedtoreinforceatypicalbuildingcomponents,namelyacolumn–beamconnection.StatictestswerethenconductedonFRPreinforcedandnon-reinforcedspecimenswithextensiveinstrumentationtostudytheinfluenceofthedesignedcompositereinforcement.

TheinvestigationreportedinthepaperformspartofacollaborativeresearchprogrambetweentheUniversityofTechnology,SydneyandtheCentreforAdvancedMaterialsTechnology,theUniversityofSydneyinrelationtoapplicationofadvancedfibrecompositestostrengthen,stiffenandhencerehabilitateconcretestructures.

2.Experimentalprocedures

Threeprototypesizereinforcedconcreteframespecimens,representingtypicalconcretecolumn–beamconnection,weredesignedforthisstudy.GeometryofthespecimenswithlocationofFRPcompositereinforcementisillustratedinFig.1.Amongthreespecimens,twoofthemareas-isconcretebeam–columnconnectiontype(nonecomposites-reinforced(Non-CR)specimens)andonespecimenwasreinforcedbythehybridofcarbonfiberandglassfibrecompositesaroundthecolumn–beamjoint(composites-reinforced(CR)specimen).Allthreespecimenswerepre-castusingstandardcommercialmixgrade40concrete.ThesteelreinforcementoftheconcretespecimensarealsoshowninFig.1.ConcretecompressiontestsbasedontheAustralianStandard(AS1012–1986)wereconductedonthesamplestakenduringtheconcretepourinordertodeterminethemodulusofelasticityandultimatecompressionstrength(UCS)oftheconcrete.

2.1.Compositesarchitecture

Oneofthethreeconcreteframespecimenswasreinforcedwithhybridcomposites.Thehybridcompositesconsistsoffourbasicarchitectures,namelyE-glasswovenroving(WR/600g/m2),choppedstrandmat(CSM-300g/m2),carboncloth(plainweave-200g/m2)andglassfibretape(GFT-250g/mm2).ThedetailsofthecompositesarchitectureareshowninTable1andFig.2.Detailsoflay-upareillustratedinFig.3.WRandcarbonclothareamulti-directionalreinforcementwithbiaxialplainweavingwhichprovideequivalentstrengthinbothaxialandhoopdirections.Theyplaythebasicreinforcementroleinthiscompositesarchitecture.GFTapplyingathoopdirectionprovidesverygoodconfinementandenhancesstructuralintegrity.Theselectionofresincuringsystemsismainlyconcernedwiththeresingel-timeatambienttemperature,whichiscriticaltowrappingprocess.Ingeneral,coldsettingresinsystems(ambienttemperaturecuring)canbeusedwhenwetlay-upprocessisapplied.Sincenolay-upmachineisavailableforthewrappingprocessdescribedinthisstudy,thehandlay-upmethodwasused.Thevinyl-esterresin,Dastar-R/VERPVE/SW/TP,wasmixedwith1.5%ofMEKP(methyl-ethyl-ketone-peroxide),0.4%ofCoNap(Cobaltnapthenate),and0.5%ofDMA(Dimethylaniline)atambienttemperature.Theresincuresatambienttemperature.Theweightratiobetweenresinandfibrelayerswas1:

1.5forWR/CSMlayersand1:

0.8forcarboncloth,respectively.Theconcreteframewaswrappedbyalames-woolrollerandaconsolidatingroller.Beforelayingthefirstfibrelayer,theconcretesurfaceswerecleanedupusingacetone,andathinresincoatwasappliedtosealmicroholesonthesurfaceofconcretecolumns.However,furthersurfacetreatmentsuchassandingsurfacetoexposetheaggregateswasintentionallyavoided.Eachcompositelayerwaswettedwiththeresinandrolledontotheconcreteframetoensurefullconsolidation.

Table1.Detailsoffivecompositesystemswithacompositearchitectures

2.2.Designofstatictests

Thestatictestsoftheconcreteframespecimensweresetupinahorizontalplane.Thethreesupportsoftheconcreteframe(noloadapplied)wererollertypeasshowninFig.4.Theendatwhichloadwasappliedwasalsoarollertypesupport,however,horizontalmovementswereobviouslynotprevented.Inordertoprovidetheidealrollertypeboundaryconditionsateachendasdesigned,aspecialsetupwasdevelopedwithcombinationofrollersandaswivelheadateachsupporting/loadingpoint(Fig.5).Four1000-kN-hydraulicjackswereusedinthetests.Amongthem,theonlyactivejackwasthejackthatappliedloads,whileothersweresimplyactingasadjustablepackingtoprovidingthereactions.

Fig.4.Illustrativesketchoftestset-upforstatictest.

Fig.5.Set-upforstatictestofconcreteframe.

2.3.Instrumentationanddatalogging

Appliedloadaswellasreactionforcesweremeasuredusingfour998.8kNloadcellslocatedineachoffoursupporting/loadingpositions.Inordertoobtaindetailedflexuraldeflectioncurvesfortheconcreteframespecimens,twelvelinearvariabledisplacementtransducers(LVDTs)witharangefrom±2.5to±50mmwereusedatstrategiclocationstomeasuretheflexuraldeflections.ExtensivestraingaugingwasdesignedtocapturethestressdistributionofthetestingspecimensinordertovalidatetestsandgainaninsightintothebehaviouroftheconcreteframewithorwithoutFRPreinforcement.Thetotalnumberofstraingauges

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 财务管理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1