届江苏省泰州南通扬州苏北四市七市高三第二次模拟考试 数学文word版.docx

上传人:b****6 文档编号:6454971 上传时间:2023-01-06 格式:DOCX 页数:10 大小:53.73KB
下载 相关 举报
届江苏省泰州南通扬州苏北四市七市高三第二次模拟考试 数学文word版.docx_第1页
第1页 / 共10页
届江苏省泰州南通扬州苏北四市七市高三第二次模拟考试 数学文word版.docx_第2页
第2页 / 共10页
届江苏省泰州南通扬州苏北四市七市高三第二次模拟考试 数学文word版.docx_第3页
第3页 / 共10页
届江苏省泰州南通扬州苏北四市七市高三第二次模拟考试 数学文word版.docx_第4页
第4页 / 共10页
届江苏省泰州南通扬州苏北四市七市高三第二次模拟考试 数学文word版.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

届江苏省泰州南通扬州苏北四市七市高三第二次模拟考试 数学文word版.docx

《届江苏省泰州南通扬州苏北四市七市高三第二次模拟考试 数学文word版.docx》由会员分享,可在线阅读,更多相关《届江苏省泰州南通扬州苏北四市七市高三第二次模拟考试 数学文word版.docx(10页珍藏版)》请在冰豆网上搜索。

届江苏省泰州南通扬州苏北四市七市高三第二次模拟考试 数学文word版.docx

届江苏省泰州南通扬州苏北四市七市高三第二次模拟考试数学文word版

2019届江苏省泰州、南通、扬州、苏北四市七市高三第二次模拟

数学文

(满分160分,考试时间120分钟)

一、填空题:

本大题共14小题,每小题5分,共计70分.

1.已知集合A={1,3,a},B={4,5},若A∩B={4},则实数a的值为________.

2.复数z=(i为虚数单位)的实部为________.

3.某单位普通职工和行政人员共280人.为了解他们在“学习强国”APP平台上的学习情况,现用分层抽样的方法从所有职员中抽取容量为56的样本.已知从普通职工中抽取的人数为49,则该单位行政人员的人数为________.

4.从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,则甲、乙两人中恰有1人被选中的概率为________.

5.执行如图所示的伪代码,则输出的S的值为________.

i←1

S←2

Whilei<7

 S←S×i

 i←i+2

EndWhile

PrintS

6.函数y=的定义域为________.

7.将函数y=2sin3x的图象向左平移个单位长度得到y=f(x)的图象,则f的值为________.

8.在平面直角坐标系xOy中,已知双曲线-=1(a>0,b>0)的右顶点A(2,0)到渐近线的距离为,则b的值为________.

9.在△ABC中,已知C=120°,sinB=2sinA,且△ABC的面积为2,则AB的长为________.

10.设P,A,B,C为球O表面上的四个点,PA,PB,PC两两垂直,且PA=2m,PB=3m,PC=4m,则球O的表面积为________m2.

11.定义在R上的奇函数f(x)满足f(x+4)=f(x),且在区间[2,4)上,f(x)=则函数y=f(x)-log5|x|的零点的个数为________.

12.已知关于x的不等式ax2+bx+c>0(a,b,c∈R)的解集为{x|3

13.在平面直角坐标系xOy中,已知点A,B在圆x2+y2=4上,且AB=2,点P(3,-1),·(+)=16,设AB的中点M的横坐标为x0,则x0的所有值为________.

14.已知集合A={x|x=2k-1,k∈N*},B={x|x=8k-8,k∈N*},从集合A中取出m个不同元素,其和记为S;从集合B中取出n个不同元素,其和记为T.若S+T≤967,则m+2n的最大值为________.

二、解答题:

本大题共6小题,共计90分.解答时应写出文字说明,证明过程或演算步骤.

15.(本小题满分14分)

在平面直角坐标系中,设向量a=(cosα,sinα),b=,其中0<α<.

(1)若a∥b,求α的值;

(2)若tan2α=-,求a·b的值.

 

16.(本小题满分14分)

如图,在直三棱柱ABCA1B1C1中,侧面BCC1B1为正方形,A1B1⊥B1C1.设A1C与AC1交于点D,B1C与BC1交于点E.求证:

(1)DE∥平面ABB1A1;

(2)BC1⊥平面A1B1C.

 

17.(本小题满分14分)

图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构成,其中前后两坡屋面ABFE和CDEF是全等的等腰梯形,左右两坡屋面EAD和FBC是全等的三角形.点F在平面ABCD和BC上的射影分别为H,M.已知HM=5m,BC=10m,梯形ABFE的面积是△FBC面积的2.2倍.设∠FMH=θ.

(1)求屋顶面积S关于θ的函数关系式;

(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k(k为正的常数),下部主体造价与其高度成正比,比例系数为16k.现欲造一栋上、下总高度为6m的别墅,试问:

当θ为何值时,总造价最低?

① 

 

18.(本小题满分16分)

如图,在平面直角坐标系xOy中,已知椭圆C1:

+y2=1,椭圆C2:

+=1(a>b>0),C2与C1的长轴长之比为∶1,离心率相同.

(1)求椭圆C2的标准方程;

(2)设点P为椭圆C2上一点.

①射线PO与椭圆C1依次交于点A,B,求证:

为定值;

②过点P作两条斜率分别为k1,k2的直线l1,l2,且直线l1,l2与椭圆C1均有且只有一个公共点,求证:

k1·k2为定值.

 

19.(本小题满分16分)

已知函数f(x)=2lnx+x2-ax,a∈R.

(1)当a=3时,求函数f(x)的极值;

(2)设函数f(x)在x=x0处的切线方程为y=g(x),若函数y=f(x)-g(x)是(0,+∞)上的单调增函数,求x0的值;

(3)是否存在一条直线与函数y=f(x)的图象相切于两个不同的点?

并说明理由.

 

20.(本小题满分16分)

已知数列{an}的各项均不为零.设数列{an}的前n项和为Sn,数列{a}的前n项和为Tn,且3S-4Sn+Tn=0,n∈N*.

(1)求a1,a2的值;

(2)证明:

数列{an}是等比数列;

(3)若(λ-nan)(λ-nan+1)<0对任意的n∈N*恒成立,求实数λ的所有值.

 

2019届高三年级第二次模拟考试(南通七市)

数学参考答案

1.4 2. 3.35 4. 5.30 6.[2,+∞) 7.- 8.2 9.2 10.29π 11.5 12.4

13.1, 14.44

15.

(1)因为a∥b,

所以cosαcos-sinαsin=0,(2分)

所以cos=0.(4分)

因为0<α<,所以<2α+<,

所以2α+=,解得α=.(6分)

(2)因为0<α<,所以0<2α<π.

又tan2α=-<0,故<2α<π.

因为tan2α==-,

所以cos2α=-7sin2α<0.

又sin22α+cos22α=1,

解得sin2α=,cos2α=-.(10分)

所以a·b=cosαsin+sinαcos=sin(12分)

=sin2αcos+cos2αsin

=·+·=.(14分)

16.

(1)因为三棱柱ABCA1B1C1为直三棱柱,

所以侧面ACC1A1为平行四边形.

又A1C与AC1交于点D,

所以D为AC1的中点.

同理,E为BC1的中点,所以DE∥AB.(3分)

又AB⊂平面ABB1A1,DE⊄平面ABB1A1,

所以DE∥平面ABB1A1.(6分)

(2)因为三棱柱ABCA1B1C1为直三棱柱,

所以BB1⊥平面A1B1C1.

又因为A1B1⊂平面A1B1C1,

所以BB1⊥A1B1.(8分)

又A1B1⊥B1C1,BB1,B1C1⊂平面BCC1B1,

BB1∩B1C1=B1,

所以A1B1⊥平面BCC1B1.(10分)

又因为BC1⊂平面BCC1B1,

所以A1B1⊥BC1.(12分)

又因为侧面BCC1B1为正方形,所以BC1⊥B1C.

又A1B1∩B1C=B1,A1B1,B1C⊂平面A1B1C,

所以BC1⊥平面A1B1C.(14分)

17.

(1)由题意得FH⊥平面ABCD,FM⊥BC,

又因为HM⊂平面ABCD,所以FH⊥HM.(2分)

在Rt△FHM中,HM=5,∠FMH=θ,

所以FM=,(4分)

所以△FBC的面积为×10×=,

所以屋顶面积S=2S△FBC+2S梯形ABFE=2×+2××2.2=,

所以S关于θ的函数关系式为S=.(6分)

(2)在Rt△FHM中,FH=5tanθ,

所以主体高度为h=6-5tanθ,(8分)

所以别墅总造价为

y=S·k+h·16k

=·k+(6-5tanθ)·16k

=k-k+96k

=80k·+96k(10分)

记f(θ)=,0<θ<,

所以f′(θ)=,

令f′(θ)=0,得sinθ=.

又0<θ<,所以θ=.(12分)

列表:

所以当θ=时,f(θ)有最小值.

故当θ为时该别墅总造价最低.(14分)

18.

(1)设椭圆C2的焦距为2c,由题意,得a=2,

=,a2=b2+c2,

解得b=,

所以椭圆C2的标准方程为+=1.(3分)

(2)①1°当直线OP的斜率不存在时,

PA=-1,PB=+1,则

==3-2.(4分)

2°当直线OP的斜率存在时,设直线OP的方程为y=kx,

代入椭圆C1的方程,消去y,得(4k2+1)x2=4,

所以x=,同理x=,(6分)

所以x=2x,由题意,得xP与xA同号,

所以xP=xA,

所以====3-2,

所以=3-2为定值.(8分)

②设P(x0,y0),所以直线l1的方程为

y-y0=k1(x-x0),即y=k1x+k1y0-x0,

记t=k1y0-x0,则l1的方程为y=k1x+t,

代入椭圆C1的方程,消去y,得(4k+1)x2+8k1tx+4t2-4=0.

因为直线l1与椭圆C1有且只有一个公共点,

所以Δ=(8k1t)2-4(4k+1)(4t2-4)=0,

即4k-t2+1=0,

将t=k1y0-x0代入上式,整理得,

(x-4)k-2x0y0k1+y-1=0,(12分)

同理可得,(x-4)k-2x0y0k2+y-1=0,

所以k1,k2为关于k的方程(x-4)k2-2x0y0k+y-1=0的两根,

所以k1·k2=.(14分)

又点P(x0,y0)在椭圆C2:

+=1上,

所以y=2-x,

所以k1·k2==-为定值.(16分)

19.

(1)当a=3时,函数f(x)=2lnx+x2-3x的定义域为(0,+∞),

则f′(x)=+x-3=,

令f′(x)=0,得x=1或x=2.(2分)

列表:

所以函数f(x)的极大值为f

(1)=-,极小值为f

(2)=2ln2-4.(4分)

(2)依题意,得切线方程为y=f′(x0)(x-x0)+f(x0)(x0>0),

所以g(x)=f′(x0)(x-x0)+f(x0)(x0>0),

记p(x)=f(x)-g(x),

则p(x)=f(x)-f(x0)-f′(x0)(x-x0)在(0,+∞)上为单调增函数,

所以p′(x)=f′(x)-f′(x0)≥0在(0,+∞)上恒成立,

即p′(x)=-+x-x0≥0在上恒成立.(8分)

法一:

变形得(x-x0)≥0在(0,+∞)上恒成立,

所以=x0,又x0>0,所以x0=.(10分)

法二:

变形得x+≥x0+在(0,+∞)上恒成立,

因为x+≥2=2(当且仅当x=时,等号成立),

所以2≥x0+,所以≤0,

所以x0=.(10分)

(3)假设存在一条直线与函数f(x)的图象有两个不同的切点T1(x1,y1),T2(x2,y2),

不妨设0

y-f(x1)=f′(x1)(x-x1),

点T2处切线l2的方程为

y-f(x2)=f′(x2)(x-x2).

因为l1,l2为同一直线,

所以(12分)

所以+x1-a=+x2-a,

2lnx1+x-ax1-x1=2lnx2+x-ax2-x2,

整理,得(14分)

消去x2,得2ln+-=0.①

令t=,由0

记p(t)=2lnt+-t,则p′(t)=--1=-<0,

所以p(t)为(0,1)上的单调减函数,

所以p(t)>p

(1)=0,

所以①式不可能成立,所以假设不成立,所以不存在一条直线与函数f(x)的图象有两个不同的切点.(16分)

20.

(1)因为3S-4Sn+Tn=0,n∈N*.

令n=1,得3a-4a1+a=0.

因为a1≠0,所以a1=1.

令n=2,得3(1+a2)2-4(1+a2)+(1+a)=0,即2a+a2=0.

因为a2≠0,所以a2=-.(3分)

(2)因为3S-4Sn+Tn=0,①

所以3S-4Sn+1+Tn+1=0,②

②-①,得3(Sn+1+Sn)an+1-4an+1+a=0,

因为an+1≠0,所以3(Sn+1+Sn)-4+an+1=0,③

(5分)

所以3(Sn+Sn-1)-4+an=0(n≥2),④

当n≥2时,③-④,得3(an+1+an)+an+1-an=0,即an+1=-an.

因为an≠0,所以=-.

又由

(1)知,a1=1,a2=-,所以=-,

所以数列{an}是以1为首项,-为公比的等比数列.(8分)

(3)由

(2)知,an=.

因为对任意的n∈N*,(λ-nan)(λ-nan+1)<0恒成立,

所以λ的值介于n和n之间.

因为n·n<0对任意的n∈N*恒成立,所以λ=0适合.(10分)

若λ>0,当n为奇数时,n<λ

记p(n)=(n≥4),因为p(n+1)-p(n)=-=<0,

所以p(n)≤p(4)=1,即≤1,所以≤(*),

从而当n≥5且n≥时,有λ≥≥,

所以λ>0不符.(13分)

若λ<0,当n为奇数时,n<λ

由(*)式知,当n≥5且n≥-时,有-λ≥≥,所以λ<0不符.

综上,实数λ的所有值为0.(16分)

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 其它课程

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1