高速模拟Turbo译码英汉双语.docx

上传人:b****5 文档编号:6403304 上传时间:2023-01-06 格式:DOCX 页数:7 大小:29.66KB
下载 相关 举报
高速模拟Turbo译码英汉双语.docx_第1页
第1页 / 共7页
高速模拟Turbo译码英汉双语.docx_第2页
第2页 / 共7页
高速模拟Turbo译码英汉双语.docx_第3页
第3页 / 共7页
高速模拟Turbo译码英汉双语.docx_第4页
第4页 / 共7页
高速模拟Turbo译码英汉双语.docx_第5页
第5页 / 共7页
点击查看更多>>
下载资源
资源描述

高速模拟Turbo译码英汉双语.docx

《高速模拟Turbo译码英汉双语.docx》由会员分享,可在线阅读,更多相关《高速模拟Turbo译码英汉双语.docx(7页珍藏版)》请在冰豆网上搜索。

高速模拟Turbo译码英汉双语.docx

高速模拟Turbo译码英汉双语

 

郑州轻工业学院

本科毕业设计(论文)

英文翻译

 

题目高速模拟Turbo译码

学生姓名

专业班级

学号

院(系)计算机与通信工程学院

指导教师(职称)

完成时间2012年4月10日

英文原文

AHigh-SpeedAnalogTurboDecoder

FotiosGioulekas,MichaelBirbas,AlexBirbas,

andGeorgeBilionis,Non-members

ABSTRACT:

Anewtypeofiterativedecodersbasedonanalogcomputingnetworks,whichareusedtodecodepowerfulerror-correctingschemes,suchasTurboandLow-densityparity-check(LDPC)codes,outperformtheirdigitalcounterpartsintermsofpowerconsumptionandspeed.OnlyfewanalogTurbodecoders,allofthembasedonCMOSsubthresholdtechnologyhavebeenimplementedtillnow.Thispaperaimstopresentthedesignandenhancedfunctionalityofanall-analogTurbodecodertakingadvantageofhigh-speedfeaturesofSiGeHBTsachievingthroughputuptoGbits/s.SimulationresultsbasedonAMS0.35μmSiGeBiCMOStechnologydemonstratepromisingperformancecomparedtoexistingdesigns.

Keywords:

AnalogTurboDecoder,Highspeed,SiGebenefits.

1.INTRODUCTION

ThesuperiorperformanceofTurbo[1]andLDPC[2]codes,whichalmost“touch”thetheoreticalShannoncapacitylimitoffergreatchannelcodinggainsintelecommunicationsystemsprovidinglowbitandframeerrorratesatsignificantlowsignaltonoiseratios.Researchers[3,4,5]haveobservedthatthisimportantclassofalgorithmscanbeefficientlyrepresentedusinggraphicalmodels(factorgraphs).Theseerror-correctingschemesarebasedoniterativelypassingmessages(softinformation),whichcorrespondtoprobabilitymassfunctions,andtheirexecutioncanbeinterpretedasaninstanceofageneral

“sum-productalgorithm(SPA)[5]”.Ithasbeenshown[3]thatthisalgorithmisidenticaltotheaposterioriprobability(APP)-BCJRalgorithm[6]usedinTurbodecoding.Themainadvantagesofthisgraphicalrepresentationaretheeasyvisualizationofthealgorithmandthesimplificationofthecorrespondingequationsleadingtolow-powerexecutiongraphs.DigitalimplementationsofTurbocodesandtheirrepresentativeSPAalgorithmrequirecomplexfloating-pointcomputations,largelookuptablesandmemorystoragewhiletheiterativenatureofthedecodingprocesscauseslonglatencies,thuslimiting04PSI04:

ManuscriptreceivedonDecember20,2004;revisedonAugust8,2005.TheauthorsarewiththeDepartmentofElectricalandComputerEngineeringUniversityofPatrasCampusofRion,26500,Greece.E-mail:

{fgiou,mbirbas,birbas,bilionis}@ee.upatras.grsignificantlythedecodingspeedandincreasingthepowerconsumption.However,thedirectmappingoftheSPAalgorithmintoanalogtranslinearcircuitsthathasbeenproposedlatelyoutperformscomparabledigitaldecodersimprovingtheratioofspeedtopowerconsumptionbytwoordersofmagnitude[7].Furthermore,adigitalerror-correctingdecoderhastoestimatetheoriginalmessagebyprocessingthereceivedanalogsignal,ataskthatrequiresA/Dconvertersofsignificantresolution.ThisdenotesthattheavailabilityofananalogdecoderwouldgivetheabilitytodirectlyprocesstheincomingsignalinitsnaturalformavoidingtheA/Dconverteroverhead.Theaimofthisworkistoutilizedirectlytheanalogreceivedwaveformthroughthedesignofa16-bitanalogTurbodecoderin0.35μmSiGeBiCMOStechnologyandtoinvestigate/compareitscapabilitiesagainstotherexistingapproaches(bothdigitalandanalog).Thisisoneofthefirstimplementationsinliteraturesincealmostallotherknownones,whicharefewanyway,areinCMOS.Therestofthepaperisorganizedasfollows:

Section2reportstherelatedandpreviousworkinthefieldofanalogdecoding.InSection3anoverviewoftheTurbocodeschemeisgivenandtheemployeddesigntechniqueisdescribed.Thedecoderarchitectureanditsperformancebasedonsimulationresultsaregiveninsection4.Finally,section5comparesourdecodertootheranaloganddigitalimplementation.

2.RELATEDWORKANDMOTIVATION

Theconceptofanall-analogdecodingschemewasintroducedin1998[8]whilepriorworkinanalogimplementationsofViterbidecoders[9,10]demonstratedbetterperformanceinpowerconsumptionandspeedthantheircorrespondingdigitalrealizations.ImplementationsofsmallanalogdecodersinCMOSandconventionalBiCMOStechnologiesofHamming[11],tailbitingconvolutional[12,13],Turbo[14,15,16]andLDPC[17,18]codeshavebeenreportedasaproof-of-concept.Thoseanalogdecodersareconstructedbyinterconnectinghighlyparalleltranslinear[7]circuits.Thesetranslinearcircuitsworkwithsoft(continuous)valuesincontinuous-timeandarebasedontheGillbertmultipliercell[19].Someresearchgroups[7]followthecurrentmodeapproach,wherethesoft-inputsandsoft-outputs(SISO)[20]oftheAPPalgorithmhavetheformofcurrentscorrespondingtodiscreteprobabilitydistributionswhileotherresearchgroup[8,12]followthevoltagemodeapproach,wherelog-likelihoodratios78ECTITRANSACTIONSONELECTRICALENG.,ELECTRONICS,ANDCOMMUNICATIONSVOL.3,NO.2AUGUST2005(LLRs)arerepresentedasdifferentialvoltages.Bothapproachesexploittheexponentialvoltage-currentcharacteristicofbipolartransistorsaswellasofCMOSoneswhentheseoperateinthesubthresholdregion.Thus,thenon-linearityofthetransistorisexploitedratherthanfought.Ourworkadoptsthecurrentmodeapproachbasedonthefactthatthevoltagemodeapproachismoresensitiveintemperature[21].Sofar,reallyfewanalogimplementationsofTurbodecoderscanbefoundintheliterature[14,15,16]andalmostalloftheminCMOStechnology.ThisismainlyduetothefactthatCMOStransistorsconsumelesspower,butontheotherhandareslowerandsensitivetonoiseandprocessvariationswhenworkinginthesubthresholdregion[22],anoperationmodethatisanywaydifficulttomaintain/controlbutitisnecessarytokeepsoastoavoidlosingaccuracy.ThesearesomeofthereasonsthatledustochooseSiGeBiCMOStechnologyandinthesametimewewereabletodirectlybenefitfromthesuperiorspeedofSiGeheterojunctiontransistors.RegardingexistingimplementationofTurbodecodersinSiGe,toourknowledgeonlyonehasbeenreported[23]indicatingspeedgainsbuttheyfollowedadifferentarchitecturalapproachfromourcase.Specifically,theyusedasmanycomponentAPPdecodersastheestimatednumberoftheiterationstobuildtheanalogdecoder(nosample-and-hold-circuitswhereusedtofeedthedecoderwiththevoltagewaveform).However,theirdesigndidnotworkproperlyandsoitwasnotpossibletocompareourdesigntotheirs.InthisworktheobjectiveistoprovetheconceptofrealizingefficientanalogimplementationsofTurbodecodersinSiGetechnology,andtoinvestigate/evaluatetheprosandconsofsuchrealizationswhilekeepingthedesignprocedureandtheTurbodecoderinquiterealisticstandards.

3.DESIGNMETHODOLOGY

3.1TurboCodeStructure

TheTurboencoderisconstructedbytheparallelconcatenationoftwoormorerecursivesystematicconvolutionalcodes(RSC),termedconstituentcodes.Theinputofthefirstencoderisnotpermuted.Theinputtotheotherencodersispermutedsothattheotherconstituentencodersarefedwiththeinterleavedanduncorrelatedformoftheinformationsequence.OurdesignreferstotheturboencoderthatcomprisestwoidenticalRSCcodesandonecyclicshiftinterleaver[24].TheRSCcodesusedaredescribedbythefollowinggeneratorpolynomial:

TheencodingprocessofanRSCcodecanberepresented

byatrellisdiagram,whichisdefinedbytherelevantgeneratorpolynomial.TheTurboencoderFig.1:

(I)Turboencoderstructure,(II)Onetrellissection,(III)theturbodecoderscheme.acceptsabitinformationsequenceuandprovidesasetofoutputsc=[u,p,q],wherepandqaretheparitybitsproducedbyRSC1andRSC2,respectively.Aftertheserializationoftheencoderoutputs,themodulatorformsandtransmitsthemthroughthechannel.InourcasetheBPSKmodulationschemeandtheAWGNmemorylesschannelmodelhavebeenemployed.Bothtrellisesareconsideredtruncatedattheend.TheTurbodecoderincorporatesaparallel-to-serial(P2S)interface,whichacceptsthecorrupted(bynoise)signalsandfeedsthemtothetwoAPPdecoders.Thetwodecodersexchangeiterativelyextrinsicinformation.Theextrinsicinformation,whichisareliabilitymeasureofeachcomponentdecoder’sestimateconcerningthetransmittedinformationsymbols,isbasedonthecorrespondingparitysequenceonly.ThisnegativefeedbackschemeisresponsiblefortheTurbodecoder’sstabilityandsuperiorperformance.Afteraspecifiednumberofiterationsthedecodermakesfinalhard-decisionsaboutthetransmittedinformationsequence.Figure1illustratestheTurboencoderwith1/3

rate,thetrellisdiagramoftheconstituentcodesand

theTurbodecoderarchitecture.

3.2FactorGraphRepresentation

TheTurboencodinganddecodingprocedurescanbeefficientlyrepresentedthroughabipartitegraphicalmodel,thefactorgraph,whichexpresseshowaglobalfunctionofseveralvariablesisfactoredintoaproductoflocalfunctions[3].Afactorgraphhasavariablenodexforeachvariable,afactornodefforeachlocalfunctionandanedgeconnectingavariablenodextoafactornodefifandonlyifxisanargumentoff.Thefinalcostfunction-inference(a-posterioriprobabilities)iscomputedbyperformingthesum-productalgorithmandthenode-updaterules[5].Figure2delineatesthefactorgraphforourTurbocodingscheme.ThevariablenodesYu,Yp,Yqarerepresentedbycirclesanddescribethechannelobservationsprovidede.g.bythematchedfilterofatypicalBPSKdemodulator.ThevariablenodesU,Q,Prepresentthetransmittedinformation(u)and

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 法学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1