最新九年级下数学第二章二次函数测试题及答案1.docx

上传人:b****4 文档编号:634969 上传时间:2022-10-11 格式:DOCX 页数:12 大小:253.81KB
下载 相关 举报
最新九年级下数学第二章二次函数测试题及答案1.docx_第1页
第1页 / 共12页
最新九年级下数学第二章二次函数测试题及答案1.docx_第2页
第2页 / 共12页
最新九年级下数学第二章二次函数测试题及答案1.docx_第3页
第3页 / 共12页
最新九年级下数学第二章二次函数测试题及答案1.docx_第4页
第4页 / 共12页
最新九年级下数学第二章二次函数测试题及答案1.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

最新九年级下数学第二章二次函数测试题及答案1.docx

《最新九年级下数学第二章二次函数测试题及答案1.docx》由会员分享,可在线阅读,更多相关《最新九年级下数学第二章二次函数测试题及答案1.docx(12页珍藏版)》请在冰豆网上搜索。

最新九年级下数学第二章二次函数测试题及答案1.docx

最新九年级下数学第二章二次函数测试题及答案1

九年级下册数学第二章《二次函数》测试

一、选择题:

1.抛物线的对称轴是()

A.直线B.直线C.直线D.直线

2.二次函数的图象如右图,则点在()

A.第一象限B.第二象限

C.第三象限D.第四象限

3.已知二次函数,且,,则一定有()

A.B.C.D.≤0

4.把抛物线向右平移3个单位,再向下平移2个单位,所得图象的解析式是,则有()

A.,B.,

C.,D.,

5.已知反比例函数的图象如右图所示,则二次函数的图象大致为()

6.下面所示各图是在同一直角坐标系内,二次函数与一次函数的大致图象,有且只有一个是正确的,正确的是()

7.抛物线的对称轴是直线()

A.B.C.D.

8.二次函数的最小值是()

A.B.2C.D.1

9.二次函数的图象如图所示,若,,则()

A.,,

B.,,

C.,,

D.,,

二、填空题:

10.将二次函数配方成

的形式,则y=______________________.

11.已知抛物线与x轴有两个交点,那么一元二次方程的根的情况是______________________.

12.已知抛物线与x轴交点的横坐标为,则=_________.

13.请你写出函数与具有的一个共同性质:

_______________.

14.有一个二次函数的图象,三位同学分别说出它的一些特点:

甲:

对称轴是直线;

乙:

与x轴两个交点的横坐标都是整数;

丙:

与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.

请你写出满足上述全部特点的一个二次函数解析式:

15.已知二次函数的图象开口向上,且与y轴的正半轴相交,请你写出一个满足条件的二次函数的解析式:

_____________________.

16.如图,抛物线的对称轴是,与x轴交于A、B两点,若B点坐标是,则A点的坐标是________________.

三、解答题:

1.已知函数的图象经过点(3,2).

(1)求这个函数的解析式;

(2)当时,求使y≥2的x的取值范围.

 

2.如右图,抛物线经过点,与y轴交于点B.

(1)求抛物线的解析式;

(2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标.

 

3.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).

(1)由已知图象上的三点坐标,求累积利润s(万元)与销售时间t(月)之间的函数关系式;

(2)求截止到几月累积利润可达到30万元;

(3)求第8个月公司所获利润是多少万元?

 

4.

5.

6.

7.卢浦大桥拱形可以近似地看作抛物线的一部分.在大桥截面1:

11000的比例图上去,跨度AB=5cm,拱高OC=0.9cm,线段DE表示大桥拱内桥长,DE∥AB,如图

(1).在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如图

(2).

(1)求出图

(2)上以这一部分抛物线为图象的函数解析式,写出函数定义域;

(2)如果DE与AB的距离OM=0.45cm,求卢浦大桥拱内实际桥长(备用数据:

≈1.4,计算结果精确到1米).

 

8.已知二次函数的图象交x轴于、两点,,交y轴的负半轴与C点,且AB=3,tan∠BAC=tan∠ABC=1.

(1)求此二次函数的解析式;

(2)在第一象限,抛物线上是否存在点P,使S△PAB=6?

若存在,请你求出点P的坐标;若不存在,请你说明理由.

 

提高题

1.已知抛物线与x轴只有一个交点,且交点为.

(1)求b、c的值;

(2)若抛物线与y轴的交点为B,坐标原点为O,求△OAB的面积(答案可带根号).

 

2.启明星、公司生产某种产品,每件产品成本是3元,售价是4元,年销售量为10万件.为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x(万元)时,产品的年销售量将是原销售量的y倍,且,如果把利润看作是销售总额减去成本费和广告费:

(1)试写出年利润S(万元)与广告费x(万元)的函数关系式,并计算广告费是多少万元时,公司获得的年利润最大,最大年利润是多少万元?

(2)把

(1)中的最大利润留出3万元做广告,其余的资金投资新项目,现有6个项目可供选择,各项目每股投资金额和预计年收益如下表:

项目

A

B

C

D

E

F

每股(万元)

5

2

6

4

6

8

收益(万元)

0.55

0.4

0.6

0.5

0.9

1

如果每个项目只能投一股,且要求所有投资项目的收益总额不得低于1.6万元,问有几种符合要求的投资方式?

写出每种投资方式所选的项目.

 

3.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m时,水面CD的宽是10m.

(1)求此抛物线的解析式;

(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通知:

前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:

如果货车按原来速度行驶,能否安全通过此桥?

若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?

 

4.某机械租赁公司有同一型号的机械设备40套.经过一段时间的经营发现:

当每套机械设备的月租金为270元时,恰好全部租出.在此基础上,当每套设备的月租金提高10元时,这种设备就少租出一套,且未租出的一套设备每月需要支出费用(维护费、管理费等)20元,设每套设备的月租金为x(元),租赁公司出租该型号设备的月收益(收益=租金收入-支出费用)为y(元).

(1)用含x的代数式表示未租出的设备数(套)以及所有未租出设备(套)的支出费用;

(2)求y与x之间的二次函数关系式;

(3)当月租金分别为4300元和350元时,租赁公司的月收益分别是多少元?

此时应该租出多少套机械设备?

请你简要说明理由;

(4)请把

(2)中所求的二次函数配方成的形式,并据此说明:

当x为何值时,租赁公司出租该型号设备的月收益最大?

最大月收益是多少?

 

九年级下册数学第二章《二次函数》测试参考答案

一、选择题:

题号

1

2

3

4

5

6

7

8

9

答案

D

D

A

A

D

D

D

B

D

二、填空题:

1.2.有两个不相等的实数根3.1

4.

(1)图象都是抛物线;

(2)开口向上;(3)都有最低点(或最小值)

5.或或或

6.等(只须,)

7.

8.,,1,4

三、解答题:

1.解:

(1)∵函数的图象经过点(3,2),∴.解得.

∴函数解析式为.

(三)上海的文化对饰品市场的影响

(2)当时,.

根据图象知当x≥3时,y≥2.

(三)上海的文化对饰品市场的影响∴当时,使y≥2的x的取值范围是x≥3.

2.解:

(1)由题意得.∴.∴抛物线的解析式为.

(2)∵点A的坐标为(1,0),点B的坐标为.

∴OA=1,OB=4.

在Rt△OAB中,,且点P在y轴正半轴上.

①当PB=PA时,.∴.

此时点P的坐标为.

②当PA=AB时,OP=OB=4此时点P的坐标为(0,4).

3.解:

(1)设s与t的函数关系式为,

培养动手能力□学一门手艺□打发时间□兴趣爱好□由题意得或解得∴.

(二)创业优势分析

(2)把s=30代入,得解得,(舍去)

因为是连锁店,老板的“野心”是开到便利店那样随处可见。

所以办了积分卡,方便女孩子到任何一家“漂亮女生”购物,以求便宜再便宜。

答:

截止到10月末公司累积利润可达到30万元.

(3)把代入,得

把代入,得

.答:

第8个月获利润5.5万元.

4.解:

(1)由于顶点在y轴上,所以设这部分抛物线为图象的函数的解析式为.

因为点或在抛物线上,所以,得.

因此所求函数解析式为(≤x≤).

(2)因为点D、E的纵坐标为,所以,得.

所以点D的坐标为,点E的坐标为.

所以.

因此卢浦大桥拱内实际桥长为(米).

5.解:

(1)∵AB=3,,∴.由根与系数的关系有.

∴,.

∴OA=1,OB=2,.

图1-4大学生购买手工艺制品目的∵,∴.

(5)资金问题∴OC=2.∴,.

中式饰品风格的饰品绝对不拒绝采用金属,而且珠子的种类也更加多样。

五光十色的水晶珠、仿古雅致的嵌丝珐琅珠、充满贵族气息的景泰蓝珠、粗糙前卫的金属字母珠片的材质也多种多样。

∴此二次函数的解析式为.

(2)在第一象限,抛物线上存在一点P,使S△PAC=6.

解法一:

过点P作直线MN∥AC,交x轴于点M,交y轴于N,连结PA、PC、MC、NA.

∵MN∥AC,∴S△MAC=S△NAC=S△PAC=6.

(1)有OA=1,OC=2.

∴.∴AM=6,CN=12.

“碧芝”隶属于加拿大的beadworks公司。

这家公司原先从事首饰加工业,自助首饰的风行也自西方,随着人工饰品的欣欣向荣,自制饰品越来越受到了人们的认同。

1996年'碧芝自制饰品店'在迪美购物中心开张,这里地理位置十分优越,交通四八达,由于是市中心,汇集了来自各地的游客和时尚人群,不用担心客流量问题。

迪美有300多家商铺,不包括柜台,现在这个商铺的位置还是比较合适的,位于中心地带,左边出口的自动扶梯直接通向地面,从正对着的旋转式楼拾阶而上就是人民广场中央,周边4、5条地下通道都交汇于此,从自家店铺门口经过的90%的顾客会因为好奇而进看一下。

∴M(5,0),N(0,10).

∴直线MN的解析式为.

由得(舍去)

∴在第一象限,抛物线上存在点,使S△PAC=6.

解法二:

设AP与y轴交于点(m>0)

∴直线AP的解析式为.

∴.

∴,∴.

又S△PAC=S△ADC+S△PDC==.

∴,

∴(舍去)或.

∴在第一象限,抛物线上存在点,使S△PAC=6.

提高题

1.解:

(1)∵抛物线与x轴只有一个交点,

∴方程有两个相等的实数根,即.①

又点A的坐标为(2,0),∴.②

由①②得,.

(2)由

(1)得抛物线的解析式为.

当时,.∴点B的坐标为(0,4).

在Rt△OAB中,OA=2,OB=4,得.

∴△OAB的周长为.

2.解:

(1).

当时,.

∴当广告费是3万元时,公司获得的最大年利润是16万元.

(2)用于投资的资金是万元.

经分析,有两种投资方式符合要求,一种是取A、B、E各一股,投入资金为(万元),收益为0.55+0.4+0.9=1.85(万元)>1.6(万元);

另一种是取B、D、E各一股,投入资金为2+4+6=12(万元)<13(万元),收益为0.4+0.5+0.9=1.8(万元)>1.6(万元).

3.解:

(1)设抛物线的解析式为,桥拱最高点到水面CD的距离为h米,则,.

∴解得

∴抛物线的解析式为.

(2)水位由CD处涨到点O的时间为1÷0.25=4(小时),

货车按原来速度行驶的路程为40×1+40×4=200<2

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 广告传媒

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1