任意波形信号发生器彭海洋.docx

上传人:b****5 文档编号:6204505 上传时间:2023-01-04 格式:DOCX 页数:43 大小:264.37KB
下载 相关 举报
任意波形信号发生器彭海洋.docx_第1页
第1页 / 共43页
任意波形信号发生器彭海洋.docx_第2页
第2页 / 共43页
任意波形信号发生器彭海洋.docx_第3页
第3页 / 共43页
任意波形信号发生器彭海洋.docx_第4页
第4页 / 共43页
任意波形信号发生器彭海洋.docx_第5页
第5页 / 共43页
点击查看更多>>
下载资源
资源描述

任意波形信号发生器彭海洋.docx

《任意波形信号发生器彭海洋.docx》由会员分享,可在线阅读,更多相关《任意波形信号发生器彭海洋.docx(43页珍藏版)》请在冰豆网上搜索。

任意波形信号发生器彭海洋.docx

任意波形信号发生器彭海洋

燕山大学

毕业设计(论文)

任意波形信号发生器

 

学院里仁学院

年级专业03级电子信息工程

学生姓名彭海洋

指导教师肖丽萍

专业负责人练秋生

答辩日期2007年6月24日

 

燕山大学毕业设计(论文)任务书

学院:

信息学院系级教学单位:

电子与通信工程系

030201070075

学生

姓名

彭海洋

专业

班级

03电(3)

题目

任意波形发生器的开发

来源

自拟

查阅大量有关智能仪器的资料,了解其原理,给出任意波形发生器系统总体设计方案,硬件电路图,软件编程,调试。

查资料,了解智能仪器原理,任意波形发生器的实现技术,给出自己的设计方案,画出硬件图,软件编程设计,上机调试。

1《电子测量仪器》

2《智能仪器》

3《MCS—51单片机原理及应用》

4期刊杂志

周次

1—4周

5—8周

9—12周

13—16周

17—18周

查资料,阅读相关文献,总体方案设计

总体方案的设计,硬件设计

硬件设计,软件设计编程

软件设计编程调试

软件调试,写论文,答辩

指导教师:

肖丽萍

职称:

副教授

系级教单位审批:

 

摘要

任意波形发生器是信号源的一种,它是具有信号源所具有的特点,更因它高的性能优势而倍受人们青睐。

信号源主要给被测电路提供所需要的己知信号(各种波形),然后用其它仪表测量感兴趣的参数。

可见信号源在各种实验应用和试验测试处理中,它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满足测量或各种实际需要。

本论文的主要任务是基于DDS技术,AD760为核心,89C52单片机作为控制器设计一个性能优良的任意波形发生器。

论文中主要对微机控制的任意波形发生器的软硬件设计进行了相应的研究,由CPU,DAC,计数器,定时器模块组成主要是用于对上层波形数据的接收,存储,同时可以单独使用,通过CPU向DAC发送所需波形数据。

软件部分是开发一个任意波形发生器的波形编辑软件。

通过该软件用户可以设置各种波形参数,进而控制硬件模块产生相应的波形信号通过串口下载到硬件系统。

该软件集中体现了任意波形发生器的“任意”性,它具有强大的波形生产、编辑及处理功能。

波形生产方式包括数学函数产生波形、手动绘制波形;可以改变波形的幅度和相位。

最后概括总结了全文,给出了结论,并说明了系统设计中待改进的工作。

关键词任意波形、DDS、89C52

Abstract

TheArbitraryWaveformGeneratorisonekindofthesignalsource,ithasthecharacteristicsthattherearethesignalsources,favoredbypeoplebecauseofitshighperformanceadvantage.Thesignalsourceprovidestheknownsignalsneededforcircuit-under-testmainly(variouskindsofwaveforms),thenmeasuretheparameterthatisinterestedinwithotherinstrument.Itisobviousthesignalsourceisusedandtesttestingwhiledealingwithinvariouskindsofexperiments,itisnotameasuringinstrument,butaccordingtotherequestofuser,asencouragesource,emulationvariouskindsoftestsignal,offertothecircuit-under-test,inordertomeetmeasurementorvariouskindsofactualneeds.

ThemaintaskofthisthesisistodevelopthecoreofregardingdigitalsimulationchipAD760ofADCompanyasbecauseofDDStechnology,CygnalCompany89C52one-chipcomputerdesignsaofgoodperformanceArbitraryWaveformGeneratorasthecontroller.ThesisdesigncorrespondingresearchtoArbitraryWaveformGeneratorandhardwareofgeneratorthatcomputercontrolmainly,byCPU,DAC,thecounter,timermoduleisitisitreceivetoupperstratawaveformdatumto

usedformainlytomakeup,store,canusealoneatthesametime,sendthenecessarywaveformdatatoDACthroughCPU.ThepartofthesoftwareisthesoftwareforeditingofwaveformwhichdevelopsaArbitraryWaveformGenerator.Cansetupvariouskindsofwaveformparameterthroughthissoftwareuser,controlhardwaremoduleproducecorrespondingwaveformsignaldownloadthroughoneUARTtothehardwaresystem.SoftwarethisembodyaconcentratedreflectionofArbitraryWaveform"Arbitrary"ofgenerator,itwithpowerwaveformproduce,editandpunishthefunction.Themodeofproductionofthewaveformincludingmathematicsfunctionproducesthewaveform,drawsthewaveformmanually;Canchangetherangeofthewaveformandphaseplace.

KeywordsArbitrarilywaveform、DDS、89C52

目录

摘要I

AbstractII

第1章绪论1

1.1概述1

1.2国内外波形发生器的发展状况2

1.2.1任意波形发生器的发展状况2

1.2.2研制任意波形发生器的目的及意义4

1.3本文研究内容4

第2章任意波形发生器的设计方案与理论分析7

2.1任意波形发生器原理7

2.1.1直接模拟法7

2.1.2直接数字法7

2.2任意波形发生器的设计方案10

2.2.1任意波形发生器的总体设计方案10

2.3任意波形发生器的理论分析11

2.3.1理想DDS的谱分布12

2.3.2DDS的相位噪声13

2.4小结14

第3章任意波形发生器的硬件设计15

3.1题目分析及方案论证15

3.1.1波形发生器15

3.1.2幅度控制方法16

3.2系统设计17

3.2.1总体设计思路17

3.3小节17

第4章各模块具体实现原理分析和说明19

4.1波形表生成模块19

4.2频率控制模块19

4.3数模转换及幅度控制模块20

4.4滤波处理模块21

4.5波形数据存储22

4.6小结22

第5章任意波形发生器的软件设计23

5.1波形编辑软件总体设计23

5.2系统软件流程图23

5.2.1软件功能及算法25

5.3误差分析25

5.3.1相位误差25

5.3.2幅值量化误差26

5.3.3由于D/A变换器的非理想特性引起的误差26

5.3.4电源噪声26

5.3.5运放带来的误差26

5.4小结26

结论27

参考文献29

附录131

附录235

附录339

附录453

致谢57

第1章绪论

1.1概述

信号源有很多种,包括正弦波信号源、函数发生器、脉冲发生器、扫描发生器、任意波形发生器、合成信号源等。

一般来讲任意波形发生器,是一种特殊的信号源,综合具有其它信号源生成能力,因而适合各种仿真实验的需要。

主要有这样的功能:

(1)函数功能

函数信号源是使用最广的通用信号源,它能提供正弦波、锯齿波、方波、脉冲波等波形,有的还同时具有调制和扫频能力、众所周知,在基础实验中设计一种电路,需要验证其性能、可靠性与稳定性,就需要给它施加理想的波形以辨别真伪。

如可使用信号源的DC补偿功能对固态电路控制DC偏压电平;可对一个怀疑有故障的数字电路,利用信号源的方波输出作为数字电路的时钟,同时使用方波加DC补偿产生有效的逻辑电平模式输出,观察该电路的运行状况,而证实故障缺陷的地方……,总之,利用任意波形发生器这方面的基础功能,能仿真基础实验室所必须的信号。

(2)任意波形

众所周知,在实际的电子环境所设计的电路在运行中,由于各种干扰和响应的存在,实际电路往往存在各种信号缺陷和瞬变信号,例如

图1-1尖峰脉冲图1-2频率突变

过脉冲、尖峰、阻尼瞬变等(见图1-1,图1-2),这些情况的发生,如在设计之初没有考虑进去,有的将会产生灾难性的后果。

例如图1-1中a处过剑峰脉冲,如果给一个抗过冲能力差的电路,将可能会导致整个设备“烧坏”。

由于任意波形发生器特殊的功能,为了增强任意波形生成能力,它往往依赖计算机通讯输出波形数据。

在计算机传输中,通过波形编辑软件生成波形,有利于扩充仪器的能力,更进一步仿真模拟实验。

同时由于编辑一个任意波形有时需要花费很长的时间和精力,并且每次编辑的波形可能有所差异,一般会在任意波形发生器内配置一定数量的非易失性存储器。

可以把所需要的波形从计算机接口下载到任意波形发生器的存储器中。

综上所述,不论是在生产还是在科研与教学上,任意波形发生器是电子工程师信号仿真实验的最佳工具。

随着我国经济和科技的发展,对相应的测试仪器和测试手段也提出了更高的要求,而任意波形发生器己成为测试仪器中至关主要的一类,因此开发任意波形发生器具有重大意义。

1.2国内外波形发生器的发展状况

1.2.1任意波形发生器的发展状况

任意波形发生器是能够产生大量的标准信号和用户定义信号,并保证高精度、高稳定性、可重复性和易操作性的电子仪器。

任意波形发生器具有连续的相位变换、和频率稳定性等优点,不仅可以模拟各种复杂信号,还可对频率、幅值、相移、波形进行动态、及时的控制,并能够与其它仪器进行通讯,组成白动测试系统,因此被广泛用于白动控制系统、震动激励、通讯和仪器仪表领域。

在70年代前,信号发生器主要有两类:

正弦波和脉冲波,而函数发生器介于两类之间,能够提供正弦波、余弦波、方波、三角波、上弦波等几种常用标准波形,产生其它波形时,需要采用较复杂的电路和机电结合的方法。

这个时期的波形发生器多采用模拟电子技术,由分立元件或模拟集成电路构成,其电路结构复杂,且仅能产生正弦波、方波、锯齿波和三角波等几种简单波形,输出的波形具有良好的相位噪声、较低的寄生分量以及较快的开关速度等,但是模拟电路的漂移较大,使输出的波形的幅度稳定性差,而且模拟器件构成的电路存在着尺寸大、价格贵、功耗大等缺点,并且要产生较为复杂的信号波形则电路结构非常复杂。

同时,主要表现为两个突出问题,一是通过电位器的调节来实现输出频率的调节,因而很难将频率调到某一固定值;二是脉冲的占空比不可调节。

在70年代后,微处理器的出现,可以利用为处理器、A/D/和D/A,硬件和软件是波形发生器的功能扩大,产生更加复杂的波形。

这时期的波形发生器多以软件为主,实质是采用微处理器对DAC的程序控制,就可以得到各种简单的波形。

例如,令微处理器的累加器A白身循环增量,每增量一次即向DAC送出一个数,使DAC有一个输出。

因为当A的内容达到最大值X55时,再增量一次,A的内容就变为最小值(零),然后可以继续增加。

如此,周而复始,就可以从DAC输出端获得一个正相的阶梯波。

用同样的方法还可获得方波、锯齿波、三角波等波形。

软件控制波形的一个最大缺点就是输出波形的频率低,主要时由CPU的工作速度决定的,如果想提高频率可以改进软件程序减少其执行周期或提高CPU的时钟周期,但这些办法时有限度的,根本的办法还是要改进硬件电路。

当时的信号处理其时专用于心好处理的微处理器,时钟频率只有1-2MHz,A/D和D/A一般在8位左右,内部存储容量也很小。

因此,能够产生正弦波的有效频宽不会超过1MHz,要获得比较平滑的低失真度的波形,重复频率不会超过l0KHz。

用数字方法的函数发生器尚处于开发阶段,正式的商品还不多。

到了1988年,出现几种真正高性能、高价格的函数发生器、但是HP公司推出了型号为HP770S的信号模拟装置系统,它由HP8770A任意波形数字化和HP1776A波形发生软件组成。

HP8770A实际上也只能产生8中波形,而且价格昂贵。

不久以后,Analogic公司推出了型号为Data-2020的多波形合成器,Lecroy公司生产的型号为9100的任意波形发生器等。

现代电子、计算机和信号处理等技术的发展,极大的促进了数字化技术在电子测量仪器的应用,使原有的模拟信号处理逐步被数字信号处理所代替,从而扩充了仪器信号的处理能力,提高了信号测量的准确度、精度和变换速度,克服了模拟信号处理的诸多缺点,数字信号发生器随之逐渐发展起来。

目前任意波形发生器的基础就是直接数字合成技术,用存储器做查询表通过数字形式存入的波形,由数/模转换器产生所需要的任意波形。

近几年来,国际上任意波形发生器技术发展主要体现在以下几个方面:

(1)过去由于频率很低应用的范围比较狭小,输出波形频率的提高,使得任意波形发生器能应用于越来越广的领域。

任意波形发生器软件的开发正使任意波形的输入变得更加方便和容易。

任意波形发生器通常允许用一系列的点、直线和固定的函数段把波形数据存入存储器。

同时可以利用一种非常强有力的数学方程输入方式,复杂的波形可以由几个比较简单的公式复合成v=f(t)形式的波形方程的数学表达式产生。

各种计算机语言的飞速发展也推动了任意波形发生器软件技术的发展。

目前可以利用可视化编程语言(如VisualBasic,VisualC等等)编写任意波形发生器的软面板,这样允许徒手从计算机显示屏上输入任意波形,来实现波形的输入。

(2)与VXI资源结合。

目前,任意波形发生器由独立的台式仪器和适用于个人计算机的插卜以及新近开发的VXI模块。

由于VXI总线的逐渐成熟和对测量仪器的高要求,在很多领域需要使用VXI系统测量和产生复杂的波形,VXI的系统资源提供了明显的优越性,但由于开发VXI模块的周期长,而且需要专门的VXI机箱的配套使用,使得任意波形发生器VXI模块仅限于航空、军事及国防等大型领域。

在民用方面,VXI模块远远不如台式仪器更为方便。

(3)随着信息技术蓬勃发展,台式仪器在走了一段下坡路之后,又在繁荣起来。

不过现在的新的台式仪器的形态,和几年前的己有很大的不同。

这些新一代台式仪器具有多种特性,可以执行多种功能。

而且外形尺寸与价格,都比过去的类似产品减少了一半

1.2.2研制任意波形发生器的目的及意义

任意波形发生器是信号源的一种,它是具有信号源所具有的特点,更因它高的性能优势而倍受人们青睐。

信号源主要给被测电路提供所需要的己知信号(各种波形),然后用其它仪表测量感兴趣的参数。

可见信号源在各种实验应用和试验测试处理中,它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满足测量或各种实际需要。

目前我国己经开始研制任意波形发生器,并取得了可喜的成果。

但总的来说,我国任意波形发生器还没有形成真正的产业。

就目前国内的成熟产品来看,多为一些PC仪器插卜,独立的仪器和VXI系统的模块很少,并且我国目前在任意波形发生器的种类和性能都与国外同类产品存在较大的差距,因此加紧对这类产品的研制显得迫在眉睫。

1.3本文研究内容

对任意波形发生器的研制在国外己有报道,而国内在这方面报道较少,本论文的任务是根据任意波形发生器的特点和应用情况,结合新一代高性能芯片设计一种使用简单、性能优良的任意波形发生器,该任意波形发生器能产生正弦波、方波,三角波等常用的标准信号,还能根据用户的需要生成任意波形,整个系统采用单片机控制,论文主要研究在任意波形发生器设计时如何合理地确定设计方案,在系统的硬件设计时需要注意的问题以及如何进行电路设计,还有单片机软件和生成任意波形编辑软件的编写等等问题。

 

第2章任意波形发生器的设计方案与理论分析

2.1任意波形发生器原理

目前信号发生的主要实现方法由直接模拟法、直接数字法两种。

2.1.1直接模拟法

图2-1直接模拟法框图

这是传统函数发生器的简化基本结构,一般都是由白由振荡器产生原始波形,然后经过转换电路将原始波形转换成其他波形,在上图中三角波是由振荡器产生的,方波是三角波通过比较器转变而成的,正弦波是三角波通过一个波形整形电路(正弦波整形器)演变而来的,所需要波形经过放大和衰减输出,显然这种方式产生的波形种类有限,每增加一种波形,都要增加相应的转换电路,整个电路变得很复杂,最重要的是要产生用户所需要的任意波形复杂的波形几乎不可能。

2.1.2直接数字法

直接数字法是采用直接数字合成(DirectDigitalSynthesis)的方法实现信号产生。

该技术具有频率转换速度快、频率分辨率高、易于控制的突出特点。

直接数字合成技术近年来发展得很快,而要产生任意波形就必须采用直接数字很成技术。

随着DDS技术的发展,出现了各种各样的直接数字合成的结构,但基本上可以发成两种:

(1)基于地址计数器的数字频率和成法

(2)基于相位累加器的数字频率和成法

2.1.2.1基于地址计数器的直接数字和成法

(1)结构框图

 

图2-2基于地址计数器的直接数学合成结构框图

这是一种最简单的直接数字很成方式,这种直接数字频率合成器的结构包括地址计数器,存储器和D/A转换器。

(2)工作原理

将波形数据存储于存储器中,而后用可程控的时钟信号为存储器提供扫描地址,与每个地址相对应的数据则代表波形在等间隔取样点上的幅度值。

数据被送至DAC,从而产生一个正比于其数字编码的电压值,每个电压值保持一个时钟周期,直至新的数据送至DAC,经数模转换后得到所需要的模拟电压波形。

在存储器里的数据产生的波形是对“取样波形”的阶梯近似。

假定地址计数器的时钟频率为fc,波形一周期内有n个采样值,那么很成的波形频率为

如果改变地址计数器的时钟频率或ROM的地址步进大小,合成波形的频率都会随着改变。

而要改变波形,只要在只读存储器中写入不同的数据。

2.1.2.2.基于相位累加器的直接数字合成法

(1)结构框图

图2-3基于相位累加器直接数字合成结构框图

这种结构中主要由相位累加器、数据ROM,D/A变换器组成,它是种全新的直接数字合成方式。

(目前国内外文献种提到的DDS一般是指这种方式,下面不作说明均指这种方式)。

(2)工作原理

将要产生的波形数据存入波形存储器,然后在参考时钟的作用下,对输入的频率数据进行累加,并且将累加器的输出一部分作为读取波形发生器的地址,将读出的波形数据经D/A转换为相应的电压信号,D/A转换器输出的一系列的阶梯电压信号经低通滤波后便输出了光滑的很成波形信号。

以合成正弦波为例,通常我们考虑一个正弦波时习惯使用正弦波的幅度一时间表达式。

S(t)=Asin(ax+

),正弦函数幅度的非线性使依据幅度产生任意频率的正弦波非常困难,但我们注意到,正弦波的相位是线性变化的,DDS技术的关键就在于充分利用了正弦波相位线性变化这一特性,在DDS芯片种,其核心部件是相位累加和SIN函数表,下面作简单介绍:

相位累加器在功能上说实质是一个N位快速可循环累加器,N位的相位累加器在每一个时钟来临时与频率控制所决定的相位增量A

累加一次,计数大于

时则白动溢出,保留后面N比特的数字于累加器中。

每当相位累加器计数满后,可白动循环重新累加,所以输出相位可以保持连续变化,这就保证了输出正弦波的连续性。

相位累加器的输出是随时间不断线性变化的用N位二进制数表达的相位信息,相位信息是无法直接利用的,必须设法把相位信息转换成幅度信息,在DDS技术中,人们把对应于不同相位的Sine函数的幅度存储在Rom中,一般地,只要取相位累加器的高A位作为寻址信号,就完全可以满足精度的需要了。

2.2任意波形发生器的设计方案

2.2.1任意波形发生器的总体设计方案

(1)设计思路

任意波形发生器产生的波形总体上可以分成两类:

正弦波和任意波(非正弦波)。

对正弦波可以逐个读出波形的每一个数据也可以间断地读出波形,这时波形的失真就会加大,但都可以通过滤波来改善失真。

对任意(非正弦波)由于波形变化不规则,其中有丰富的谐波,因而这时不能简单的用滤波的方法来改善波形失真(因滤波有可能把信号的有用部分给削减了)。

所以当要合成产生任意波形时,应采取逐点读出波形的每一个数据,要改变输出频率fc,可通过改变参考时钟频率fc或通过改变波形存储器中存储的波形周期的数目来实现,由于商DDS芯片中ROM表中的数据己固化,只能输出正弦波。

所以采用商用的DDS芯片显然很难直接实现任意波形的生成。

(2)系统总体设计框图

根据以上分析,基于使用和性能的综合考虑,设计的任意波形发生器的结构时采用直接数字合成结构的方式,采用相位相加累加器的方式,逐点读出波形存储器中波形的数据,经过D/A转换和低通滤波器后输出所需要的任意波形,通过改变参考时钟的频率和计数的步长就可以实现波形频率的改变。

 

 

图2-4系统整体框图

2.3任意波形发生器的理论分析

DDS的数学模型可归结为:

在每一个时钟周期

内,频率控制码K与N比特相位累加器累加一次,并同时对`,N取模运算,得到的相位值以二进制代码的形式对RAM进行寻址,输出与该相位值相对应的数字化幅度值,再经DAC数模转换完成离散信号到连续信号的转变,最后经低通滤波器滤波即可得到信号输出。

由DDS的数学模型可知,DDS的输出频率满足

(2-1)

当K=1时,DDS有最小频率输出,则DDS的最小频率分辨率

(2-2)

在实际的DDS电路中,为了达到足够小的频率分辨率,通常将相位累加器的位数N取得较大,如N=32.但

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 党团工作 > 入党转正申请

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1