TL494脉宽控制电路要点.docx

上传人:b****4 文档编号:619146 上传时间:2022-10-11 格式:DOCX 页数:16 大小:207.19KB
下载 相关 举报
TL494脉宽控制电路要点.docx_第1页
第1页 / 共16页
TL494脉宽控制电路要点.docx_第2页
第2页 / 共16页
TL494脉宽控制电路要点.docx_第3页
第3页 / 共16页
TL494脉宽控制电路要点.docx_第4页
第4页 / 共16页
TL494脉宽控制电路要点.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

TL494脉宽控制电路要点.docx

《TL494脉宽控制电路要点.docx》由会员分享,可在线阅读,更多相关《TL494脉宽控制电路要点.docx(16页珍藏版)》请在冰豆网上搜索。

TL494脉宽控制电路要点.docx

TL494脉宽控制电路要点

TL494脉宽调制控制电路

 

    TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。

TL494有SO-16和PDIP-16两种封装形式,以适应不同场合的要求。

其主要特性如下:

     主要特征

     集成了全部的脉宽调制电路。

     片内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)。

     内置误差放大器。

     内止5V参考基准电压源。

     可调整死区时间。

     内置功率晶体管可提供500mA的驱动能力。

     推或拉两种输出方式。

 

 工作原理简述

    TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下:

    输出脉冲的宽度是通过电容CT上的正极性锯齿波电压与另外两个控制信号进行比较来实现。

功率输出管Q1和Q2受控于或非门。

当双稳触发器的时钟信号为低电平时才会被选通,即只有在锯齿波电压大于控制信号期间才会被选通。

当控制信号增大,输出脉冲的宽度将减小。

参见图2。

    控制信号由集成电路外部输入,一路送至死区时间比较器,一路送往误差放大器的输入端。

死区时间比较器具有120mV的输入补偿电压,它限制了最小输出死区时间约等于锯齿波周期的4%,当输出端接地,最大输出占空比为96%,而输出端接参考电平时,占空比为48%。

当把死区时间控制输入端接上固定的电压(范围在0—3.3V之间)即能在输出脉冲上产生附加的死区时间。

脉冲宽度调制比较器为误差放大器调节输出脉宽提供了一个手段:

当反馈电压从0.5V变化到3.5时,输出的脉冲宽度从被死区确定的最大导通百分比时间中下降到零。

两个误差放大器具有从-0.3V到(Vcc-2.0)的共模输入范围,这可能从电源的输出电压和电流察觉得到。

误差放大器的输出端常处于高电平,它与脉冲宽度调制器的反相输入端进行“或”运算,正是这种电路结构,放大器只需最小的输出即可支配控制回路。

 

    当比较器CT放电,一个正脉冲出现在死区比较器的输出端,受脉冲约束的双稳触发器进行计时,同时停止输出管Q1和Q2的工作。

若输出控制端连接到参考电压源,那么调制脉冲交替输出至两个输出晶体管,输出频率等于脉冲振荡器的一半。

如果工作于单端状态,且最大占空比小于50%时,输出驱动信号分别从晶体管Q1或Q2取得。

输出变压器一个反馈绕组及二极管提供反馈电压。

在单端工作模式下,当需要更高的驱动电流输出,亦可将Q1和Q2并联使用,这时,需将输出模式控制脚接地以关闭双稳触发器。

这种状态下,输出的脉冲频率将等于振荡器的频率。

    TL494内置一个5.0V的基准电压源,使用外置偏置电路时,可提供高达10mA的负载电流,在典型的0—70℃温度范围50mV温漂条件下,该基准电压源能提供±5%的精确度。

TL494的极限参数

 名称

代号

极限值

单位

 工作电压

Vcc

42

V

 集电极输出电压

Vc1,Vc2

42

V

 集电极输出电流

Ic1,Ic2

500

mA

 放大器输入电压范围

VIR

-0.3V—+42

V

 功耗

PD

1000

mW

 热阻

RθJA

80

℃/W

 工作结温

TJ

125

 工作环境温度

 TL494B

 TL494C

 TL494I

 NCV494B

TA

 

-40—+125

0—+70

-40—+85

-40—+125

 额定环境温度

TA

40

 

 

TL494及其在半桥变换开关电源中应用情况

 

    摘 要:

介绍了电压驱动型脉宽调制器件TL494的脉宽调制特性,并对其在半桥变换开关电源中的应用情况做了分析。

 

    关键词:

电压驱动;脉宽调制;半桥变换;开关电源 

    TL494是美国德克萨斯州仪器公司生产的一种性能优良的电压驱动型脉宽调制器件,可作为单端式、推挽式、全桥式、半桥式开关电源控制器,被广泛应用于开关电源中,是开关电源的核心控制器件。

TL494的输出三极管可接成共发射极及射极跟随2种方式,因而可以选择双端推挽输出或单端输出方式。

在推挽输出方式时,他的两路驱动脉冲相差180°;而在单端方式时,其两路驱动脉冲为同步同相。

TL494的3脚为脉宽调制补偿端,4脚为死区电平控制端,5脚和6脚为内部锯齿波振荡器的外界振荡电阻和振荡电容连接端。

当在TL494的12脚和7脚接上直流辅助电源,并在他的6脚和5脚分别接上振荡电阻R和振荡电容C后,就可在他的5脚上得到一个振荡频率为:

f=1.1/RC的锯齿波振荡电压VΔ;直流输入供电范围在7~40 V之间。

     1 TL494的特点

    

(1)内置有5 V±5%的基准电源。

    

(2)末级输出级的最大电流可达250 mA。

    (3)有死区时间可调控制端。

  (4)可对他的锯齿波振荡器的工作状态执行外同步控制。

  (5)末级输出可采用双端对称输出或单端输出的工作方式。

    2 TL494的性能测试

  

(1)工作电压对各参数的影响,如表1所示。

此时调频电容为9 nF,调频电阻为9 kΩ,调宽电压为2.5 V。

 

  从表1可以看出,工作电压V的改变对输出脉冲的周期T及脉宽T1无影响,而脉冲的幅值F随着工作电压V的增加也逐步增大,工作电流I随电压的变化不是很大,其供电范围在7~40 V之间,而其工作频率可达300 kHz,可见TL494的可调性大。

  

(2)当TL494调频电容和电阻一定时,改变脉冲宽度,就会得到输出脉冲宽度不同的一系列脉冲,这样就会得到调宽电压与占空比的关系,如图1所示。

从图1可以看出,当脉宽为周期的1/2时,效果最佳。

    3 TL494的应用

    TL494脉宽调制器件是目前微机电源中被广泛采用来构成其他激式直流开关电源的专用器件。

在显示电源和其他开关电源的应用中也常被采用。

在大功率直流开关电源中,为提高直流电源调整精度及易于完成各种自动保护控制功能,是直流开关电源中常用的脉宽调制器件,而且价格便宜。

下面介绍一个TL494的应用电路。

 

  该部分电路如图2所示,PWM脉宽调制电路和半桥式变换电路,输出端经全波整流输出电路合成构成开关稳压电源电路。

    TL494接成双端输出形式,由TL494⑨,①0脚输出的脉冲经Q1~Q4组成的图腾柱式驱动电路进行缓冲,进一步提高驱动容性负载的能力,在由B1,B2隔离传送,形成2组驱动信号,分别驱动2个半桥变换器。

调节RW 2可改变振荡频率,基准电压由RW 1调整加至TL494的①脚,这样通过调节频率和占空比可以得到不同的输出结果。

如图3和图4所示,其中供电部分电压经可调变压器取为50 V。

图3所示是在周期T一定而占空比可调时的结果。

图4所示是占空比不变而周期T可调时的结果。

 

  当周期一定,改变占空比时,输出电压也随着改变,基本上当占空比较大时,输出电压达到最大。

而当占空比一定,周期改变时,输出电压随着周期的增大在逐渐减小,也就是在频率较大时输出电压较大。

    4 结语

  通过以上对电压驱动型脉宽调制器件TL494的介绍可知,该器件既可调频又可调脉宽,且其可调性强,工作区间大,可用他搭建不同的驱动电路。

由他构成的半桥变换开关电源,体积小、重量轻,可应用于其他各个领域。

 

 

 

用TL494实现单回路控制器

[日期:

2004-12-7]

来源:

电子技术应用 作者:

刘宝成裴志利

[字体:

大中小]

摘要:

介绍了以电压驱动型脉宽调制控制集成电路TL494为核心元件并加上简单滤波电路及RC放电回路所构成的回路控制器。

它能把脉冲宽度变化的信号转换成与脉冲宽度成正比变化的直流信号,进而实现闭环单回路控制。

   关键词:

脉宽调制回路控制低通滤波

TL494是美国德州仪器公司生产的一种电压驱动型脉宽调制控制集成电路,主要应用在各种开关电源中。

本文介绍它与相应的输入、输出电路等一起构成一个单回路控制器。

1TL494管脚配置及其功能

TL494的内部电路由基准电压产生电路、振荡电路、间歇期调整电路、两个误差放大器、脉宽调制比较器以及输出电路等组成。

图1是它的管脚图,其中1、2脚是误差放大器I的同相和反相输入端;3脚是相位校正和增益控制;4脚为间歇期调理,其上加0~3.3V电压时可使截止时间从2%线怀变化到100%;5、6脚分别用于外接振荡电阻和振荡电容;7脚为接地端;8、9脚和11、10脚分别为TL494内部两个末级输出三极管集电极和发射极;12脚为电源供电端;13脚为输出控制端,该脚接地时为并联单端输出方式,接14脚时为推挽输出方式;14脚为5V基准电压输出端,最大输出电流10mA;15、16脚是误差放大器II的反相和同相输入端。

2回路控制器工作原理

回路控制器的方框图如图2所示。

被控制量(如压力、流量、温度等)通过传感器交换为0~5V的电信号,作为闭环回路的反馈信号,通过有源简单二阶低通滤波电路进行平滑、去除杂波干扰后送给TL494的误差放大器I的IN+同相输入端。

设定输入信号是由TL494的5V基准电压源经一精密多圈电位器分压,由电位器动端通过有源简单二阶低通滤波电路接入TL494的误差放大器I的IN-反相输入端。

反馈信号和设定信号通过TL494的误差放大器I进行比较放大,进而控制脉冲宽度,这个脉冲空度变化的输出又经过整流滤波电路及由集成运算放大器构成的隔离放大电路进行平滑和放大处理,输出一个与脉冲宽度成正比的、变化范围为0~10V的直流电压。

这个电压就是所需要的输出控制电压,用它去控制执行电路,及时调整被控制量,使被控制量始终与设定值保持一致,形成闭环单回路控制。

用TL494实现的单回路控制器的电路原理图如图3所示。

2.1输入电路

两个运算放大器IC1A、IC1B都接成有源简单二阶低通滤电路,分别作为反馈信号输入和设定信号输入的处理电路。

在电路设计上,两个输入电路采取完全对称的形式。

将有源简单二阶低通滤波电路的截止频率fp设计为4Hz,根据有源简单二阶低通滤波电路中fp=0.37f0(f0为该滤波器的特征频率)选取C1与C2为1μF,然后算得R1与R2为16kΩ。

这样可以滤除由于传感器距离较远输入引线过长而带来的高频杂波干扰和平滑传感器信号本身的波动,使加入到TL494的管脚1即误差放大器I同相输入端IN+的信号尽可能地平滑和相对稳定。

在有源简单二阶低通滤波电路与误差放大器I同相输入端IN+之间接有10kΩ的限流隔离电阻。

把TL494的14脚输出的5V基准电压源,用一3.3kΩ精密多圈电位器W1分压作为设定输入信号,通过与处理传感器反馈信号相同的电路,送入TL494的管脚2,即误差放大器I的反相输入端IN-端。

实验中发现,R19、R20这两个限流隔离电阻必不可少。

否则,TL494误差放大器I的两个输入端的电位将相互影响。

另外,实验数据还表明,TL494误差放大器的两个输入端在低电压时跟踪的线性不大好,故这里将两个输入运算放大器的放大倍数取为2,以改善反馈信号与设定信号的跟踪线性。

   2.2脉宽调制电路

在本控制器中只用到了TL494的误差放大器I,故将误差放大器II的IN+(16脚)接地、IN-(15脚)接高电平。

为保护TL494的输出三极管,经R13和R10分压,在4脚加接近0.3V的间歇调整电压。

R9、R12和C5组成了相位校正和增益控制网络。

经过实验,在本控制器中振荡电阻和振荡电容分别取200kΩ和0.1μF。

输出采用并取方式,取自发射级

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 教育学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1