在GPS网总体设计中,精度指标是比较重要的参数,它的数值将直接影响GPS
网的布设方案、观测数据的处理以及作业的时间和经费。
在实际设计工作中,用
户可根据所作控制的实际需要和可能,合理地制定。
既不能制定过低而影响网的精度,也不必要盲目追求过高的精度造成不必要的支出。
网的图形设计虽然主要决定于用户的要求,但是经费、时间和人为的消耗以及所需接收设备的类型、数量和后勤保障条件等,也都与网的设计有关。
对此应当充分加以顾及,以期在满足用户要求的条件下尽量减少消耗。
为了满足用户的要求,设计的一般原则是:
1GPS网一般应通过独立观测边构成闭合图形,例如三角形、多边形或附合线路,以增加检核条件,提高网的可靠性。
2GPS网点应尽量与原有地面控制网点相重合。
重合点一般不应少于3个(不
足时应联测)且在网中应分布均匀,以便可靠地确定GPS网与地面网之间的转换参数。
3GPS网点应考虑与水准点相重合,而非重合点一般应根据要求以水准测量方法(或相当精度的方法)进行联测,或在网中设一定密度的水准联测点,以便为大地水准面的研究提供资料。
4为了便于观测和水准联测,GPS网点一般应设在视野开阔和容易到达的地方。
5为了便于用经典方法联测或扩展,可在网点附近布设一通视良好的方位点,以建立联测方向。
方位点与观测站的距离,一般应大干300米。
根据GPS测量的不同用途,GPS网的独立观测边均应构成一定的几何图形。
图形的基本形式如下:
1.三角形网
GPS网中的三角形边由独立观测边组成。
根据经典测量可知,这种图形的几何图形几何结构强,具有良好的自检能力,能够有效的发现观测成果的粗差,以保障网的可靠性。
同时,经平差后网中相邻点间基线向量的精度分布均匀。
但其观测工作量较大,尤其当接收机的数量较少时,将使观测工作的总时间大为延长,因此通常只有当网的精度和可靠性要求较高,接收机数目在三台以上时,才单独采用这种图形。
见图1-2。
2.环形网
环形网是由若干含有多条独立观测边的闭合环所组成的网,这种网形与经典测量中的导线网相似,图形的结构比三角形稍差。
此时闭合环中所含基线边的数量决定了网的自检能力和可靠性。
一般来说,闭合环中包含的基线边不能超过一定的数量。
根据有关规范,对闭合环中基线的边数有以下限制;
表1-2
最简独立闭合环或符合路线边数的规定
级測
A
IB
W5
0
<6
<8
<10—
环形网的优点是观测工作量较小,且具有较好的自检性和可靠性,其缺点主要是,非直接观测的基线边(或间接边)精度较直接观测边低,相邻点间的基线精度分布不均匀。
作为环形网特例,在实际工作中还可以按照网的用途和实际的情况,采用所谓附合线路。
这种附合线路与经典测量中的附合导线相似。
采用这种图形的条件是,附合线路两端点间的已知基线向量,必须具有较高的精度,另外,附
合线路所包含的基线边数,也不能超过一定的限制。
见图1-3
3.星形网
星形网的几何图形简单,但其直接观测边之间,一般不构成闭合图形,所以其检验与发现粗差的能力较差。
这种网的主要优点,是观测中通常只需要两台GP宓收机,作业简单。
因此在快速静态定位和动态定位等快速作业模式中,大多采用这种网形。
它广泛用于工程放样、边界测量、地籍测量和碎部测量等。
见图1-4。
三角形和环形网,是大地测量和精密工程测量中普遍采取的两种基本图形。
用户
还可以根据实际情况采用上述两种图形的混合网形。
GPS接收机对收到的卫星信号量测可达毫米级的精度。
但是,由于卫星信号在大气传播时不可避免地受到大气层中电离层及对流层的扰动,导致观测精度的降低。
因此在GPSM量中,通常采用差分的形式,用两台接收机来对一条基线进行同观测。
在同步观测同一组卫星时,大气层对观测的影响大部分都被抵消了。
基线越短,抵消的程度越显著,因为这时卫星信号通过大气层到达两台接收机的路径几乎相同。
因此,建议用户在设计基线边时以20公里范围以内为宜。
基线边过长,一方面
观测时间势必增加,另一方面由于距离增大而导致电离层的影响有所增强。
在全球定位系统中,卫星主要视作位置已知的高空观测目标。
所以,为了确定接收机的位置,GPS卫星的瞬时位置通常归化到统一的地球坐标系统。
现在全球定位系统采用的WG-S84坐标系统,是一个精确的全球大地坐标系统。
而我国的国家大地坐标系采用的是1954北京坐标系及1980西安坐标系。
通常在工程测量中,还往往采用独立的施工坐标系。
因此,在GPS测量中必须确定地区性坐标系与全球坐标系的大地测量基准之差,并进行两坐标系统之间的转换。
南方S60GPSM
量系统软件很方便就可实现WG-S84、54坐标系、80坐标系中空间直角坐标、大地坐标及高斯平面直角坐标之间的转换,并且可以米用高斯投影或UTM投影在任何独立坐标系中进行网平差处理。
1.4选点与埋石
由于GPS测量观测站之间无需相互通视,而且网的图形结构也比较灵活,所以选点工作远较经典控制测量的选点工作简便。
但由于点位的选择对于保证观测工作的顺利进行和可靠地保证测量成果精度具有重要意义,所以,在选点工作开始之前,应充分收集和了解有关测区的地理情况以及原有测量标志点的分布及保持情况,以便确定适宜的观测站位置。
选点工作通常应遵守的原则是:
1观测站(即接收天线安置点)应远离大功率的无线电发射台和高压输电线,以避免其周围磁场对GPS卫星信号的干扰。
接收机天线与其距离一般不得小于200m
2观测站附近不应有大面积的水域或对电磁波反射(或吸收)强烈的物体,以减弱多路径效应的影响;
3观测站应设在易于安置接收设备的地方,且视野开阔。
在视场内周围障碍物的高度角,一般应大于10°〜15°,以减弱对流层折射的影响;
4观测站应选在交通方便的地方,并且便于用其它测量手段联测和扩展;
5对于基线较长的GPS网,还应考虑观测站附近具有良好的通讯设施(电话与电报、邮电)和电力供应,以供观测站之间的联络和设备用电;
6点位选定后(包括方位点),均应按规定绘制点位注记,其主要内容应包括点位及点位略图,点位的交通情况以及选点情况等。
注:
用户如果在树木等对电磁波传播影响较大的物体下设观测站,当接收机工作时,接收的卫星信号将产生畸变,这样即使采集时各项指标都较好,但结果将是不可靠的。
建议用户根据需要在GPS点大约300米附近建立与其通视的方位点,以便在必要时采用常规经典的测量方法进行联测。
在点位选好后,在对点位进行编号时必须注意点位编号的合理性,在野外采集时输入的观测站名是由四个任意输入的字符组成,为了在测后处理时方便及准确,必须不使点号重复。
建议用户在编号时尽量采用数字按顺序编号。
1.4.2埋石
在GPS测量中,网点一般应设置在具有中心标志的标石,以精确标志点位。
具体标石的设置可参照有关规范,对于一般的控制网,只需要采用普通的标石,或在岩层、建筑物上做标志。
1.5静态测量系统的野外作业
1.5.1制定观测计划
在施测前,建议用户根据网的布设方案、规模的大小、精度要求、GPS卫星星座、参与作业的GPS数量以及后勤保障条件(交通、通信)等,制定观测计划。
一、确定工作量用户根据网的精度要求、接收机数目,顾及效率和网的精度、可靠性而确定工作量。
具体方法可参考有关规范。
这里仅强调一下观测时段、时段长度(同步观测时间)与基线长度等的关系。
为了在后处理中能取得符合精度的成果,必须保证接收机的一定同步观测时间,其取决于众多的因素:
如基线长度、观测卫星的数目、卫星的空间位置精度因子
(PDO)P及大气层(主要指电离层)状况。
如果用户在4颗以上的卫星且PDOP
值小于4.0的情况下进行观测,那么所需的观测时间将主要取决于基线的长度及电离层扰动。
电离层的扰动是随时间及点位的位置而变化的。
由于电离层的扰动在夜间要小得多,因此夜间的观测时间通常可以减小一半,或者测程增加一倍。
所以,夜间将有利于10km以上的长基线测量。
但是,除非有特别的限制条件,否则要规定精确的观测时间是不客观的。
表1-3仅就一般情况下同步观测的时段数及时段的长度必须满足的要求提供一个参考值。
表1-3
各级GPS测量基本技术要求规范
萋目
SE劃〜
A
B
C
D
E
卫星裁址哥度第L)
10
15
15
15
15
>4
>4
>4
>4
>4
谆卿测卫星总数
>20
>6