奇偶性:
非奇非偶函数,或者称没有奇偶性。
周期性:
不是周期函数
零点:
x=1
注意:
负数和0没有对数。
两句经典话:
底真同对数正
底真异对数负
三角函数
三角函数(Trigonometric)是数学中属于初等函数中的超越函数的一类函数。
它们的本质是任意角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。
另一种定义是在直角三角形中,但并不完全。
现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
它包含六种基本函数:
正弦、余弦、正切、余切、正割、余割。
由于三角函数的周期性,它并不具有单值函数意义上的反函数。
三角函数在复数中有较为重要的应用。
在物理学中,三角函数也是常用的工具。
锐角三角函数
在直角三角形ABC中,a、b、c分别是∠A、∠B、∠C的对边,∠C为直角。
则定义以下运算方式:
sinA=∠A的对边长/斜边长,sinA记为∠A的正弦;sinA=a/c
cosA=∠A的邻边长/斜边长,cosA记为∠A的余弦;cosA=b/c
tanA=∠A的对边长/∠A的邻边长,tanA=sinA/cosA=a/btanA记为∠A的正切;
当∠A为锐角时sinA、cosA、tanA统称为“锐角三角函数”。
sinA=cosBsinB=cosA
常见三角函数
在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)。
在这个直角三角形中,y是θ的对边,x是θ的邻边,r是斜边,则可定义以下六种运算方法:
基本函数
英文
表达式
语言描述
正弦函数
Sine
sinθ=y/r
角θ的对边比斜边
余弦函数
Cosine
cosθ=x/r
角θ的邻边比斜边
正切函数
Tangent
tanθ=y/x
角θ的对边比邻边
余切函数
Cotangent
cotθ=x/y
角θ的邻边比对边
正割函数
Secant
secθ=r/x
角θ的斜边比邻边
余割函数
Cosecant
cscθ=r/y
角θ的斜边比对边
在初高中教学中,主要研究正弦、余弦、正切三种函数。
注:
tan、cot曾被写作tg、ctg,现已不用这种写法。
单位圆定义
六个三角函数也可以依据半径为1中心为原点的单位圆来定义。
单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形。
但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在0和π/2弧度之间的角。
它也提供了一个图像,把所有重要的三角函数都包含了。
根据勾股定理,
三角函数
单位圆的方程是:
x^2+y^2=1
图像中给出了用弧度度量的一些常见的角。
逆时针方向的度量是正角,而顺时针的度量是负角。
设一个过原点的线,同x轴正半部分得到一个角θ,并与单位圆相交。
这个交点的x和y坐标分别等于cosθ和sinθ。
图像中的三角形确保了这个公式;半径等于斜边且长度为1,所以有sinθ=y/1和cosθ=x/1。
单位圆可以被视为是通过改变邻边和对边的长度,但保持斜边等于1的一种查看无限个三角形的方式。
对于大于2π或小于等于2π的角度,可直接继续绕单位圆旋转。
在这种方式下,正弦和余弦变成了周期为2π的周期函数:
对于任何角度θ和任何整数k。
周期函数的最小正周期叫做这个函数的“基本周期”。
正弦、余弦、正割或余割的基本周期是全圆,也就是2π弧度或360°;正切或余切的基本周期是半圆,也就是π弧度或180°。
上面只有正弦和余弦是直接使用单位圆定义的,其他四个三角函数的定义如图所示。
其他四个三角函数的定义
在正切函数的图像中,在角kπ附近变化缓慢,而在接近角(k+1/2)π的时候变化迅速。
正切函数的图像在θ=(k+1/2)π有垂直渐近线。
这是因为在θ从左侧接进(k+1/2)π的时候函数接近正无穷,而从右侧接近(k+1/2)π的时候函数接近负无穷。
另一方面,所有基本三角函数都可依据中心为O的单位圆来定义,类似于历史上使用的几何定义。
特别
三角函数
是,对于这个圆的弦AB,这里的θ是对向角的一半,sinθ是AC(半弦),这是印度的阿耶波多介入的定义。
cosθ是水平距离OC,versinθ=1-cosθ是CD。
tanθ是通过A的切线的线段AE的长度,所以这个函数才叫正切。
cotθ是另一个切线段AF。
secθ=OE和cscθ=OF是割线(与圆相交于两点)的线段,所以可以看作OA沿着A的切线分别向水平和垂直轴的投影。
DE是exsecθ=secθ-1(正割在圆外的部分)。
通过这些构造,容易看出正割和正切函数在θ接近π/2的时候发散,而余割和余切在θ接近零的时候发散。
三角函数线
依据单位圆定义,
我们可以做三个有向线段(向量)来表示正弦、余弦、正切的值。
如图所示,圆O是一个单位圆,P是α的终边与单位圆上的交点,M点是P在x轴的投影,S(1,0)是圆O与x轴正半轴的交点,过S点做圆O的切线l。
那么向量MP对应的就是α的正弦值,向量OM对应的就是余弦值。
OP的延长线(或反向延长线)与l的交点为T,则向量ST对应的就是正切值。
向量的起止点不能颠倒,因为其方向是有意义的。
借助线三角函数线,我们可以观察到第二象限角α的正弦值为正,余弦值为负,正切值为负。
特殊角的三角函数
在三角函数中,有一些特殊角,例如30°、45°、60°,这些角的三角函数值为简单单项式,计算中可以直接求出具体的值。
这些函数的值参见右图:
三角函数的特殊值
同角三角函数关系式
平方关系
sin^2(α)+cos^2(α)=1
cos(2α)=cos^2(α)-sin^2(α)=1-2sin^2(α)=2cos^2(α)-1
sin(2α)=2sin(α)cos(α)
tan^(α)+1=1/cos^(α)
2sin^(α)=1-cos(2α)
cot^(α)+1=1/sin^(α)
积的关系
sinα=tanα×cosα
cosα=cotα×sinα
tanα=sinα×secα
cotα=cosα×cscα
secα=tanα×cscα
cscα=secα×cotα
倒数关系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的关系
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
三角函数
。
诱导公式
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等
k是整数
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
sec(2kπ+α)=secα
csc(2kπ+α)=cscα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sec(π+α)=-secα
csc(π+α)=-cscα
公式三:
任意角α与-α的三角函数值之间的关系
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
sec(-α)=secα
csc(-α)=-cscα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sec(π-α)=-secα
csc(π-α)=cscα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sec(2π-α)=secα
csc(2π-α)=-cscα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sec(π/2+α)=-cscα
csc(π/2+α)=secα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sec(π/2-α)=cscα
csc(π/2-α)=secα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sec(3π/2+α)=csc