中考数学动态问题专题复习试题附答案和解释.docx

上传人:b****6 文档编号:6035616 上传时间:2023-01-03 格式:DOCX 页数:7 大小:21.18KB
下载 相关 举报
中考数学动态问题专题复习试题附答案和解释.docx_第1页
第1页 / 共7页
中考数学动态问题专题复习试题附答案和解释.docx_第2页
第2页 / 共7页
中考数学动态问题专题复习试题附答案和解释.docx_第3页
第3页 / 共7页
中考数学动态问题专题复习试题附答案和解释.docx_第4页
第4页 / 共7页
中考数学动态问题专题复习试题附答案和解释.docx_第5页
第5页 / 共7页
点击查看更多>>
下载资源
资源描述

中考数学动态问题专题复习试题附答案和解释.docx

《中考数学动态问题专题复习试题附答案和解释.docx》由会员分享,可在线阅读,更多相关《中考数学动态问题专题复习试题附答案和解释.docx(7页珍藏版)》请在冰豆网上搜索。

中考数学动态问题专题复习试题附答案和解释.docx

中考数学动态问题专题复习试题附答案和解释

2017中考数学动态问题专题复习试题(附答案和解释)

动态问题一.选择题1.(2016•四川宜宾)如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是(  )A.4.8B.5C.6D.7.2【考点】矩形的性质.【分析】首先连接OP,由矩形的两条边AB、BC的长分别为3和4,可求得OA=OD=5,△AOD的面积,然后由S△AOD=S△AOP+S△DOP=OA•PE+OD•PF求得答案.【解答】解:

连接OP,∵矩形的两条边AB、BC的长分别为6和8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD=10,∴OA=OD=5,∴S△ACD=S矩形ABCD=24,∴S△AOD=S△ACD=12,∵S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,解得:

PE+PF=4.8.故选:

A.

2.(2016•湖北荆门•3分)如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是(  )A.B.C.D.【考点】动点问题的函数图象.【分析】△ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.【解答】解:

当P点由A运动到B点时,即0≤x≤2时,y=×2x=x,当P点由B运动到C点时,即2<x<4时,y=×2×2=2,符合题意的函数关系的图象是A;故选:

A.3.(2016•青海西宁•3分)如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是(  )A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.【解答】解:

作AD∥x轴,作CD⊥AD于点D,若右图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选:

A.二.填空题1.(2016•四川眉山•3分)如图,已知点A是双曲线在第三象限分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第四象限内,且随着点A的运动,点C的位置也在不断变化,但点C始终在双曲线上运动,则k的值是 �3 .

【分析】根据反比例函数的性质得出OA=OB,连接OC,过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,根据等边三角形的性质和解直角三角形求出OC=OA,求出△OFC∽△AEO,相似比,求出面积比,求出△OFC的面积,即可得出答案.【解答】解:

∵双曲线的图象关于原点对称,∴点A与点B关于原点对称,∴OA=OB,连接OC,如图所示,∵△ABC是等边三角形,OA=OB,∴OC⊥AB.∠BAC=60°,∴tan∠OAC==,∴OC=OA,过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,∵AE⊥OE,CF⊥OF,OC⊥OA,∴∠AEO=∠OFC,∠AOE=90°�∠FOC=∠OCF,∴△OFC∽△AEO,相似比,∴面积比,∵点A在第一象限,设点A坐标为(a,b),∵点A在双曲线上,∴S△AEO=ab=,∴S△OFC=FC•OF=,∴设点C坐标为(x,y),∵点C在双曲线上,∴k=xy,∵点C在第四象限,∴FC=x,OF=�y.∴FC•OF=x•(�y)=�xy=�,故答案为:

�3.【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,解直角三角形,相似三角形的性质和判定的应用,能综合运用知识点进行推理和计算是解此题的关键.2.(2016•四川内江)如图12所示,已知点C(1,0),直线y=-x+7与两坐标轴分别交于A,B两点,D,E分别是AB,OA上的动点,则△CDE周长的最小值是______.[答案]10[考点]勾股定理,对称问题。

[解析]作点C关于y轴的对称点C1(-1,0),点C关于x轴的对称点C2,连接C1C2交OA于点E,交AB于点D,则此时△CDE的周长最小,且最小值等于C1C2的长.∵OA=OB=7,∴CB=6,∠ABC=45°.∵AB垂直平分CC2,∴∠CBC2=90°,C2的坐标为(7,6).在△C1BC2中,C1C2===10.即△CDE周长的最小值是10.

故答案为:

10.3.(2016•黑龙江龙东•3分)如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为 2 .【考点】轴对称-最短路线问题;圆周角定理.【分析】过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,由对称的性质可知=,再由圆周角定理可求出∠A′ON的度数,再由勾股定理即可求解.【解答】解:

过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,连接OB,OA′,AA′,∵AA′关于直线MN对称,∴=,∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,过O作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,∴A′B=2A′Q=2,即PA+PB的最小值2.故答案为:

2.三.解答题1.(2016•四川攀枝花)如图,在△AOB中,∠AOB为直角,OA=6,OB=8,半径为2的动圆圆心Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连结CD、QC.

(1)当t为何值时,点Q与点D重合?

(2)当⊙Q经过点A时,求⊙P被OB截得的弦长.(3)若⊙P与线段QC只有一个公共点,求t的取值范围.

【考点】圆的综合题.【分析】

(1)由题意知CD⊥OA,所以△ACD∽△ABO,利用对应边的比求出AD的长度,若Q与D重合时,则,AD+OQ=OA,列出方程即可求出t的值;

(2)由于0<t≤5,当Q经过A点时,OQ=4,此时用时为4s,过点P作PE⊥OB于点E,利用垂径定理即可求出⊙P被OB截得的弦长;(3)若⊙P与线段QC只有一个公共点,分以下两种情况,①当QC与⊙P相切时,计算出此时的时间;②当Q与D重合时,计算出此时的时间;由以上两种情况即可得出t的取值范围.【解答】解:

(1)∵OA=6,OB=8,∴由勾股定理可求得:

AB=10,由题意知:

OQ=AP=t,∴AC=2t,∵AC是⊙P的直径,∴∠CDA=90°,∴CD∥OB,∴△ACD∽△ABO,∴,∴AD=,当Q与D重合时,AD+OQ=OA,∴+t=6,∴t=;

(2)当⊙Q经过A点时,如图1,OQ=OA�QA=4,∴t==4s,∴PA=4,∴BP=AB�PA=6,过点P作PE⊥OB于点E,⊙P与OB相交于点F、G,连接PF,∴PE∥OA,∴△PEB∽△AOB,∴,∴PE=,∴由勾股定理可求得:

EF=,由垂径定理可求知:

FG=2EF=;

(3)当QC与⊙P相切时,如图2,此时∠QCA=90°,∵OQ=AP=t,∴AQ=6�t,AC=2t,∵∠A=∠A,∠QCA=∠ABO,∴△AQC∽△ABO,∴,∴,∴t=,∴当0<t≤时,⊙P与QC只有一个交点,当QC⊥OA时,此时Q与D重合,由

(1)可知:

t=,∴当<t≤5时,⊙P与QC只有一个交点,综上所述,当,⊙P与QC只有一个交点,t的取值范围为:

0<t≤或<t≤5.

【点评】本题考查圆的综合问题,涉及圆的切线判定,圆周角定理,相似三角形的判定与性质,学生需要根据题意画出相应的图形来分析,并且能综合运用所学知识进行解答.2.(2016•四川攀枝花)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,�3)

(1)求抛物线的解析式;

(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积.(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?

若存在,求出直线m的解析式,若不存在,请说明理由.

【考点】二次函数综合题.【分析】

(1)由B、C两点的坐标,利用待定系数法可求得抛物线的解析式;

(2)连接BC,则△ABC的面积是不变的,过P作PM∥y轴,交BC于点M,设出P点坐标,可表示出PM的长,可知当PM取最大值时△PBC的面积最大,利用二次函数的性质可求得P点的坐标及四边形ABPC的最大面积;(3)设直线m与y轴交于点N,交直线l于点G,由于∠AGP=∠GNC+∠GCN,所以当△AGB和△NGC相似时,必有∠AGB=∠CGB=90°,则可证得△AOC≌△NOB,可求得ON的长,可求出N点坐标,利用B、N两的点坐标可求得直线m的解析式.【解答】解:

(1)把B、C两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2�2x�3;

(2)如图1,连接BC,过Py轴的平行线,交BC于点M,交x轴于点H,

在y=x2�2x�3中,令y=0可得0=x2�2x�3,解得x=�1或x=3,∴A点坐标为(�1,0),∴AB=3�(�1)=4,且OC=3,∴S△ABC=AB•OC=×4×3=6,∵B(3,0),C(0,�3),∴直线BC解析式为y=x�3,设P点坐标为(x,x2�2x�3),则M点坐标为(x,x�3),∵P点在第四限,∴PM=x�3�(x2�2x�3)=�x2+3x,∴S△PBC=PM•OH+PM•HB=PM•(OH+HB)=PM•OB=PM,∴当PM有最大值时,△PBC的面积最大,则四边形ABPC的面积最大,∵PM=�x2+3x=�(x�)2+,∴当x=时,PMmax=,则S△PBC=×=,此时P点坐标为(,�),S四边形ABPC=S△ABC+S△PBC=6+=,即当P点坐标为(,�)时,四边形ABPC的面积最大,最大面积为;(3)如图2,设直线m交y轴于点N,交直线l于点G,

则∠AGP=∠GNC+∠GCN,当△AGB和△NGC相似时,必有∠AGB=∠CGB,又∠AGB+∠CGB=180°,∴∠AGB=∠CGB=90°,∴∠ACO=∠OBN,在Rt△AON和Rt△NOB中∴Rt△AON≌Rt△NOB(ASA),∴ON=OA=1,∴N点坐标为(0,�1),设直线m解析式为y=kx+d,把B、N两点坐标代入可得,解得,∴直线m解析式为y=x�1,即存在满足条件的直线m,其解析式为y=x�1.【点评】本题为二次函数的综合应用,涉及知识点有待定系数法、二次函数的最值、相似三角形的判定、全等三角形的判定和性质等.在

(2)中确定出PM的值最时四边形ABPC的面积最大是解题的关键,在(3)中确定出满足条件的直线m的位置是解题的关键.本题考查知识点较多,综合性较强,特别是第

(2)问和第(3)问难度较大.3.(2016•四川攀枝花)如图,在△AOB中,∠AOB为直角,OA=6,OB=8,半径为2的动圆圆心Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连结CD、QC.

(1)当t为何值时,点Q与点D重合?

(2)当⊙Q经过点A时,求⊙P被OB截得的弦长.(3)若⊙P与线段QC只有一个公共点,求t的取值范围.

【考点】圆的综合题.【分析】

(1)由题意知CD⊥OA,所以△ACD∽△ABO,利用对应边的比求出AD的长度,若Q与D重合时,则,AD+OQ=OA,列出方程即可求出t的值;

(2)由于0<t≤5,当Q经过A点时,OQ=4,此时用时为4s,过点P作PE⊥OB于点E,利用垂径定理即可求出⊙P被OB截得的弦长;(3)若⊙P与线段QC只有一个公共点,分以下两种情况,①当QC与⊙P相切时,计算出此时的时间;②当Q与D重合时,计算出此时的时间;由以上两种情况即可得出t的取值范围.【解答】解:

(1)∵OA=6,OB=8,∴由勾股定理可求得:

AB=10,由题意知:

OQ=AP=t,∴AC=2t,∵AC是⊙P的直径,∴∠CDA=90°,∴CD∥OB,∴△ACD∽△ABO,∴,∴AD=,当Q与D重合时,AD+OQ=OA,∴+t=6,∴t=;

(2)当⊙Q经过A点时,如图1,OQ=OA�QA=4,∴t==4s,∴PA=4,∴BP=AB�PA=6,过点P作PE⊥OB于点E,⊙P与OB相交于点F、G,连接PF,∴PE∥OA,∴△PEB∽△AOB,∴,∴PE=,∴由勾股定理可求得:

EF=,由垂径定理可求知:

FG=2EF=;

(3)当QC与⊙P相切时,如图2,此时∠QCA=90°,∵OQ=AP=t,∴AQ=6�t,AC=2t,∵∠A=∠A,∠QCA=∠ABO,∴△AQC∽△ABO,∴,∴,∴t=,∴当0<t≤时,⊙P与QC只有一个交点,

当QC⊥OA时,此时Q与D重合,由

(1)可知:

t=,∴当<t≤5时,⊙P与QC只有一个交点,综上所述,当,⊙P与QC只有一个交点,t的取值范围为:

0<t≤或<t≤5.

 

【点评】本题考查圆的综合问题,涉及圆的切线判定,圆周角定理,相似三角形的判定与性质,学生需要根据题意画出相应的图形来分析,并且能综合运用所学知识进行解答.4.(2016•黑龙江龙东•8分)已知:

点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F,点O为AC的中点.

(1)当点P与点O重合时如图1,易证OE=OF(不需证明)

(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?

请写出你对图2、图3的猜想,并选择一种情况给予证明.

 

【考点】四边形综合题.【分析】

(1)由△AOE≌△COF即可得出结论.

(2)图2中的结论为:

CF=OE+AE,延长EO交CF于点G,只要证明△EOA≌△GOC,△OFG是等边三角形,即可解决问题.图3中的结论为:

CF=OE�AE,延长EO交FC的延长线于点G,证明方法类似.【解答】解:

(1)∵AE⊥PB,CF⊥BP,∴∠AEO=∠CFO=90°,在△AEO和△CFO中,,∴△AOE≌△COF,∴OE=OF.

(2)图2中的结论为:

CF=OE+AE.图3中的结论为:

CF=OE�AE.选图2中的结论证明如下:

延长EO交CF于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠EAO=∠GCO,在△EOA和△GOC中,,∴△EOA≌△GOC,∴EO=GO,AE=CG,在RT△EFG中,∵EO=OG,∴OE=OF=GO,∵∠OFE=30°,∴∠OFG=90°�30°=60°,∴△OFG是等边三角形,∴OF=GF,∵OE=OF,∴OE=FG,∵CF=FG+CG,∴CF=OE+AE.选图3的结论证明如下:

延长EO交FC的延长线于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠AEO=∠G,在△AOE和△COG中,,∴△AOE≌△COG,∴OE=OG,AE=CG,在RT△EFG中,∵OE=OG,∴OE=OF=OG,∵∠OFE=30°,∴∠OFG=90°�30°=60°,∴△OFG是等边三角形,∴OF=FG,∵OE=OF,∴OE=FG,∵CF=FG�CG,∴CF=OE�AE.

5.(2016•黑龙江齐齐哈尔•12分)如图所示,在平面直角坐标系中,过点A(�,0)的两条直线分别交y轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程x2�2x�3=0的两个根

(1)求线段BC的长度;

(2)试问:

直线AC与直线AB是否垂直?

请说明理由;(3)若点D在直线AC上,且DB=DC,求点D的坐标;(4)在(3)的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?

若存在,请直接写出P点的坐标;若不存在,请说明理由.【考点】三角形综合题.【分析】

(1)解出方程后,即可求出B、C两点的坐标,即可求出BC的长度;

(2)由A、B、C三点坐标可知OA2=OC•OB,所以可证明△AOC∽△BOA,利用对应角相等即可求出∠CAB=90°;(3)容易求得直线AC的解析式,由DB=DC可知,点D在BC的垂直平分线上,所以D的纵坐标为1,将其代入直线AC的解析式即可求出D的坐标;(4)A、B、P三点为顶点的三角形是等腰三角形,可分为以下三种情况:

①AB=AP;②AB=BP;③AP=BP;然后分别求出P的坐标即可.【解答】

(1)∵x2�2x�3=0,∴x=3或x=�1,∴B(0,3),C(0,�1),∴BC=4,

(2)∵A(�,0),B(0,3),C(0,�1),∴OA=,OB=3,OC=1,∴OA2=OB•OC,∵∠AOC=∠BOA=90°,∴△AOC∽△BOA,∴∠CAO=∠ABO,∴∠CAO+∠BAO=∠ABO+∠BAO=90°,∴∠BAC=90°,∴AC⊥AB;

(3)设直线AC的解析式为y=kx+b,把A(�,0)和C(0,�1)代入y=kx+b,∴,解得:

,∴直线AC的解析式为:

y=�x�1,∵DB=DC,∴点D在线段BC的垂直平分线上,∴D的纵坐标为1,∴把y=1代入y=�x�1,∴x=�2,∴D的坐标为(�2,1),(4)设直线BD的解析式为:

y=mx+n,直线BD与x轴交于点E,把B(0,3)和D(�2,1)代入y=mx+n,∴,解得,∴直线BD的解析式为:

y=x+3,令y=0代入y=x+3,∴x=�3,∴E(�3,0),∴OE=3,∴tan∠BEC==,∴∠BEO=30°,同理可求得:

∠ABO=30°,∴∠ABE=30°,当PA=AB时,如图1,此时,∠BEA=∠ABE=30°,∴EA=AB,∴P与E重合,∴P的坐标为(�3,0),当PA=PB时,如图2,此时,∠PAB=∠PBA=30°,∵∠ABE=∠ABO=30°,∴∠PAB=∠ABO,∴PA∥BC,∴∠PAO=90°,∴点P的横坐标为�,令x=�代入y=x+3,∴y=2,∴P(�,2),当PB=AB时,如图3,∴由勾股定理可求得:

AB=2,EB=6,若点P在y轴左侧时,记此时点P为P1,过点P1作P1F⊥x轴于点F,∴P1B=AB=2,∴EP1=6�2,∴sin∠BEO=,∴FP1=3�,令y=3�代入y=x+3,∴x=�3,∴P1(�3,3�),若点P在y轴的右侧时,记此时点P为P2,过点P2作P2G⊥x轴于点G,∴P2B=AB=2,∴EP2=6+2,∴sin∠BEO=,∴GP2=3+,令y=3+代入y=x+3,∴x=3,∴P2(3,3+),综上所述,当A、B、P三点为顶点的三角形是等腰三角形时,点P的坐标为(�3,0),(�,2),(�3,3�),(3,3+).

6.(2016•湖北黄石•12分)在△ABC中,AB=AC,∠BAC=2∠DAE=2α.

(1)如图1,若点D关于直线AE的对称点为F,求证:

△ADF∽△ABC;

(2)如图2,在

(1)的条件下,若α=45°,求证:

DE2=BD2+CE2;(3)如图3,若α=45°,点E在BC的延长线上,则等式DE2=BD2+CE2还能成立吗?

请说明理由.【分析】

(1)根据轴对称的性质可得∠EAF=∠DAE,AD=AF,再求出∠BAC=∠DAF,然后根据两边对应成比例,夹角相等两三角形相似证明;

(2)根据轴对称的性质可得EF=DE,AF=AD,再求出∠BAD=∠CAF,然后利用“边角边”证明△ABD和△ACF全等,根据全等三角形对应边相等可得CF=BD,全等三角形对应角相等可得∠ACF=∠B,然后求出∠ECF=90°,最后利用勾股定理证明即可;(3)作点D关于AE的对称点F,连接EF、CF,根据轴对称的性质可得EF=DE,AF=AD,再根据同角的余角相等求出∠BAD=∠CAF,然后利用“边角边”证明△ABD和△ACF全等,根据全等三角形对应边相等可得CF=BD,全等三角形对应角相等可得∠ACF=∠B,然后求出∠ECF=90°,最后利用勾股定理证明即可.【解答】证明:

(1)∵点D关于直线AE的对称点为F,∴∠EAF=∠DAE,AD=AF,又∵∠BAC=2∠DAE,∴∠BAC=∠DAF,∵AB=AC,∴=,∴△ADF∽△ABC;

(2)∵点D关于直线AE的对称点为F,∴EF=DE,AF=AD,∵α=45°,∴∠BAD=90°�∠CAD,∠CAF=∠DAE+∠EAF�∠CAD=45°+45°�∠CAD=90°�∠CAD,∴∠BAD=∠CAF,在△ABD和△ACF中,,∴△ABD≌△ACF(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=2α,α=45°,∴△ABC是等腰直角三角形,∴∠B=∠ACB=45°,∴∠ECF=∠ACB+∠ACF=45°+45°=90°,在Rt△CEF中,由勾股定理得,EF2=CF2+CE2,所以,DE2=BD2+CE2;

(3)DE2=BD2+CE2还能成立.理由如下:

作点D关于AE的对称点F,连接EF、CF,由轴对称的性质得,EF=DE,AF=AD,∵α=45°,∴∠BAD=90°�∠CAD,∠CAF=∠DAE+∠EAF�∠CAD=45°+45°�∠CAD=90°�∠CAD,∴∠BAD=∠CAF,在△ABD和△ACF中,,∴△ABD≌△ACF(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=2α,α=45°,∴△ABC是等腰直角三角形,∴∠B=∠ACB=45°,∴∠ECF=∠ACB+∠ACF=45°+45°=90°,在Rt△CEF中,由勾股定理得,EF2=CF2+CE2,所以,DE2=BD2+CE2.【点评】本题是相似形综合题,主要利用了轴对称的性质,相似三角形的判定,同角的余角相等的性质,全等三角

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 职业教育 > 职业技术培训

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1