第十一章 电感传感器.docx

上传人:b****5 文档编号:5772833 上传时间:2023-01-01 格式:DOCX 页数:14 大小:421.23KB
下载 相关 举报
第十一章 电感传感器.docx_第1页
第1页 / 共14页
第十一章 电感传感器.docx_第2页
第2页 / 共14页
第十一章 电感传感器.docx_第3页
第3页 / 共14页
第十一章 电感传感器.docx_第4页
第4页 / 共14页
第十一章 电感传感器.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

第十一章 电感传感器.docx

《第十一章 电感传感器.docx》由会员分享,可在线阅读,更多相关《第十一章 电感传感器.docx(14页珍藏版)》请在冰豆网上搜索。

第十一章 电感传感器.docx

第十一章电感传感器

第十一章电感传感器

课题:

数字式传感器的原理及应用

课时安排:

3

课次编号:

16

教材分析

难点:

二线制编码与角度的关系

重点:

角度分辨力与分辨率

教学目的和要求

(机械制造、机电一体化、数控专业的重点章节)

1.了解直接测量和间接测量的区别;

2.了解绝对式和增量式角编码器的原理;

3.掌握角编码器的分辨力、分辨率计算;

4、了解光栅的原理和细分计算;

5.了解磁栅的原理和计算;

6.了解容栅的原理和计算;

采用教学方法和实施步骤:

讲授、课堂讨论、分析

教具:

角编码器、光栅、磁栅、容栅

各教学环节和内容

演示:

做以下的实验:

将一只角编码器拆开,观察内部的光栅和sin、cos读数头。

上电后,观察正转和反转时,数码管读数的增加和减少以及读数的正负值。

从而引入角编码器的原理、结构,转角、转速测量,直线位移的测量等。

第二节角编码器

角编码器(码盘):

是一种旋转式位置传感器,它的转轴通常与被测旋转轴连接,随被测轴一起转动。

它能将被测轴的角位移转换成二进制编码或一串脉冲。

角编码器分类:

绝对式编码器和增量式角编码器。

一、绝对式角编码器

绝对式角编码器的基础原理——接触式编码器结构

图11-2接触式码盘

a)电刷在码盘上的位置b)4位8421二进制码盘c)4位格雷码码盘

1-码盘2-转轴3-导电体4-绝缘体5-电刷6-激励公用轨道(接电源正极)

分辨的角度α(即分辨力)为

α=360°/2n(11-1)

分辨率=1/2n(11-2)

提问:

码道越多,位数n越大,所能分辨的角度α就越?

若要提高分辨力,就必须增加码道数,即二进制位数。

例:

某12码道的绝对式角编码器,其每圈的位置数为212=4096,能分辨的角度为α=360°/212=5.27';

若为13码道,则能分辨的角度为α=360°/213=2.64'。

2.绝对式光电编码器的特点

没有接触磨损,允许转速高。

码盘材料:

不锈钢薄板、玻璃码盘。

二、增量式编码器

增量式光电码盘结构示意图如图11-4所示。

光电码盘与转轴连在一起。

码盘可用玻璃材料制成,表面镀上一层不透光的金属铬,然后在边缘制成向心的透光狭缝。

透光狭缝在码盘圆周上等分,数量从几百条到几千条不等。

这样,整个码盘圆周上就被等分成n个透光的槽。

增量式光电码盘也可用不锈钢薄板制成,然后在圆周边缘切割出均匀分布的透光槽。

图11-4增量式光电码盘结构示意图

a)外形b)内部结构

1—转轴2-发光二极管3-光栏板4-零标志位光槽

5-光敏元件6-码盘7-电源及信号线连接座

光电码盘的光源最常用的是自身有聚光效果的发光二极管。

当光电码盘随工作轴一起转动时,光线透过光电码盘和光栏板狭缝,形成忽明忽暗的光信号。

光敏元件把此光信号转换成电脉冲信号,通过信号处理电路后,向数控系统输出脉冲信号,也可由数码管直接显示位移量。

光电编码器的测量准确度与码盘圆周上的狭缝条纹数n有关,能分辨的角度α为

α=360°/n(11-3)

分辨率=1/n(11-4)

例:

码盘边缘的透光槽数为1024个,则能分辨的最小角度α=360°/1024=0.352°。

为了判断码盘旋转的方向,必须在光栏板上设置两个狭缝,其距离是码盘上的两个狭缝距离的(m+1/4)倍,m为正整数,并设置了两组对应的光敏元件,如图11-4中的A、B光敏元件,有时也称为cos、sin元件。

光电编码器的输出波形如图11-5所示。

有关A、B信号如何用于辨向、细分的原理将在本章第三节中论述。

为了得到码盘转动的绝对位置,还须设置一个基准点,如图11-4中的“零位标志槽”。

码盘每转一圈,零位标志槽对应的光敏元件产生一个脉冲,称为“一转脉冲”,见图11-5中的C0脉冲。

图11-5光电编码器的输出波形

A超前于B,判断为正向旋转,A滞后于B,判断为反向旋转

三、角编码器的应用

角编码器除了能直接测量角位移或间接测量直线位移外,还有数字测速:

由于增量式角编码器的输出信号是脉冲形式,因此,可以通过测量脉冲频率或周期的方法来测量转速。

角编码器可代替测速发电机的模拟测速,而成为数字测速装置。

图11-6M法和T法测速原理

a)M法测速b)T法测速

在一定的时间间隔ts内(又称闸门时间,如10s、1s、0.1s等),用角编码器所产生的脉冲数来确定速度的方法称为M法测速。

若角编码器每转产生N个脉冲,在闸门时间间隔ts内得到m1个脉冲,则角编码器所产生的脉冲频率f为

(11-5)

则转速n(单位为r/min)为

例11-2某角编码器的指标为2048个脉冲/r(即N=2048P/r),在0.2s时间内测得8K脉冲(1K=1024),即ts=0.2s,m1=8K=8192个脉冲,f=4096/0.2s=20480Hz,求转速n。

解角编码器轴的转速为

适合于M法测速的场合:

要求转速较快,否则计数值经较少,测量准确度经较低。

例如,角编码器的输出脉冲频率f=1000Hz,闸门时间ts=1s时,测量精度可达0.1%左右;而当转速较慢时,角编码器输出脉冲频率的较低,±1误差(多或少计数一个脉冲)将导致测量精度的降低。

闸门时间ts的长短对测量精度的影响:

ts取得较长时,测量精度较高,但不能反映速度的瞬时变化,不适合动态测量;ts也不能取得太小,以至于在ts时段内得到的脉冲太少,而使测量精度降低。

例如,脉冲的频率f仍为1000Hz,ts缩短到0.01s时,此时的测量准确度将降到10%左右。

工位编码

由于绝对式编码器每一转角位置均有一个固定的编码输出,若编码器与转盘同轴相连,则转盘上每一工位安装的被加工工件均可以有一个编码相对应,转盘工位编码如图11-9所示。

当转盘上某一工位转到加工点时,该工位对应的编码由编码器输出给控制系统。

图11-9转盘工位编码

1—绝对式编码器2-电动机3-转轴4-转盘5-工件6-刀具

例:

要使处于工位4上的工件转到加工点等待钻孔加工,计算机就控制电动机通过带轮带动转盘逆时针旋转。

与此同时,绝对式编码器(假设为4码道)输出的编码不断变化。

设工位1的绝对二进制码为0000,当输出从工位3的0100,变为0110时,表示转盘已将工位4转到加工点,电动机停转。

第三节光栅传感器

一、光栅的类型和结构

光栅种类:

可分为物理光栅和计量光栅。

在检测中常用的是计量光栅。

计量光栅分类:

透射式光栅和反射式光栅。

结构;

光源、光栅副、光敏元件三大部分组成。

光敏元件:

可以是光敏二极管,也可以是光电池。

透射式光栅结构:

用光学玻璃做基体并镀铬,在其上均匀地刻划出间距、宽度相等的条纹,形成连续的透光区和不透光区,如图11-10a所示;

反射式光栅:

使用不锈钢作基体,在其上用化学方法制出黑白相间的条纹,形成反光区和不反光区,如图11-10b所示。

图11-10计量光栅的分类示意图

a)透射式光栅b)反射式光栅

1-光源2-透镜3-指示光栅4-标尺光栅5-光敏元件

计量光栅按形状分类:

长光栅和圆光栅。

长光栅用于直线位移测量,故又称直线光栅;

圆光栅用于角位移测量

计量光栅的组成:

标尺光栅(主光栅)和指示光栅,又称光栅副。

标尺光栅和指示光栅之间保持很小的间隙(0.05mm或0.1mm)。

在长光栅中标尺光栅固定不动,而指示光栅安装在运动部件上,所以两者之间形成相对运动。

在圆光栅中,指示光栅通常固定不动,而标尺光栅随轴转动。

栅距:

在图11-12中,a为栅线宽度,b为栅缝宽度,W=a+b称为光栅常数,或称栅距。

通常a=b=W/2,

栅线密度:

10线/mm、25线/mm、50线/mm、100线/mm和200线/mm等几种。

角节距:

对于圆光栅来说,两条相邻刻线的中心线之夹角称为角节距,每周的栅线数从较低精度的100线到高精度等级的21600线不等。

例:

某一长光栅的栅线密度为:

25线/mm,求栅距W(可视为分辨力):

W=1mm/25线=0.04mm/线=4μm/线

二、光栅与莫尔条纹

演示莫尔条纹:

将两块画有垂直方向的等间隔黑条(1mm/条)的有机玻璃叠合在一起。

可以看到,在水平方向出现较宽的回条。

黑条的间距随两块玻璃的角度而变化。

可以大到50mm。

这种莫尔条纹随两块玻璃的水平相对运动而上下移动。

在光栅的适当位置(如图11-13中的sin位置或cos位置)安装2只光敏元件(有时为4只)。

当指示光栅沿x轴自左向右移动时,莫尔条纹的亮带和暗带(图11-12中的a-a线和b-b线)将顺序自下而上(图中的y方向)不断地掠过光敏元件。

光敏元件“观察”到莫尔条纹的光强变化近似于正弦波变化。

光栅移动一个栅距W,光强变化一个周期。

光电元件随着两块玻璃的水平相对运动,而输出连续的正弦波。

图11-14光栅位移与光强及输出电压的关系

由于光栅的刻线非常细微(例如上例中的4μm),如果只用一块玻璃,光电元件很难直接分辨到底从面前移动过去了多少个栅距,

利用能放大栅距的莫尔条纹的价值:

莫尔条纹的黑白条纹比栅距大几十倍,十一能让光敏元件“看清”随光栅刻线移动所带来的光强变化。

莫尔条纹的间距是放大了的光栅栅距,它随着指示光栅与主光栅刻线夹角而改变。

由于θ很小,所以其关系可用下式表示

L=W/sinθ≈W/θ(11-8)

式中L——莫尔条纹间距;

W——光栅栅距;

θ——两光栅刻线夹角,必须以弧度(rad)为单位,式(11-8)才能成立。

从式(11-8)可知,θ越小,L越大,相当于把微小的栅距扩大了1/θ。

由此可见,计量光栅起到光学放大器的作用。

例:

对25线/mm的长光栅而言,W=0.04mm。

若θ=0.016rad,则L=2.5mm,光敏元件可以分辨这2.5mm的间隔,但若不采用两块玻璃组成莫尔条纹的光学放大,则无法分辨0.04mm的间隔。

三、辨向及细分

(一)辨向原理

如果传感器只安装一套光电元件,则在实际应用中,无论光栅作正向移动还是反向移动,光敏元件都产生相同的正弦信号,是无法分辨移动方向的。

为此,必须设置辨向电路。

举例:

人有两只耳朵,它们的输出信号经大脑处理后,可以判断脑后物体移动的左右方向。

在上例中,左边的耳朵称为sin耳朵,右边的耳朵称为cos耳朵。

通常可以在沿光栅线的y方向上相距(m

1/4)L(相当于电相角1/4周期)的距离上设置sin和cos两套光电元件(见图11-13中的sin位置和cos位置)。

这样就可以得到两个相位相差π/2的电信号uos和uoc,经放大、整形后得到u'os和u'oc两个方波信号,分别送到计算机的两路接口,由计算机判断两路信号的相位差。

当指示光栅向右移动时,uos滞后于uoc;当指示光栅向左移动时,uos超前于uoc。

计算机据此判断指示光栅的移动方向。

(二)细分技术

细分技术又称倍频技术。

如将光敏元件的输出电信号直接计数,则光栅的分辨力只有一个W的大小。

为了能够分辨比W更小的位移量,必须采用细分电路。

细分电路能在不增加光栅刻线数(线数越多,成本越昂贵)的情况下提高光栅的分辨力。

该电路能在一个W的距离内等间隔地给出n个计数脉冲。

细分后计数脉冲的频率是原来的n倍,传感器的分辨力就会有较大的提高。

通常采用的细分方法有4倍频法、16倍频法等,可通过专用集成电路来实现。

例11-4细分数n=4,光栅刻线数N=100根/mm,求细分后光栅的分辨力Δ。

解栅距W=1/N=(1/100)mm=0.01mm

Δ=W/n=(0.01/4)mm=0.0025mm=2.5μm

由此可见,光栅通过4细分电路处理后,相当于将原光栅的分辨力提高了3倍。

(三)零位光栅

在增量式光栅中,为了寻找坐标原点、消除误差积累,在测量系统中需要有零位标记(位移的起始点),因此在光栅尺上除了主光栅刻线外,还必须刻有零位基准的零位光栅(参见图11-12中的序号5),以形成零位脉冲,又称参考脉冲。

把整形后的零位信号作为计数开始的条件。

轴环式数显表

图11-17是ZBS型轴环式光栅数显表示意图。

它的主光栅用不锈钢圆薄片制成,可用于角位移的测量。

图11-17ZBS型轴环式数显表

a)外形b)内部结构c)测量电路框图

1-电源线(+5V)2-轴套3-数字显示器4-复位开关5-主光栅

6-红外发光二极管7-指示光栅8-sin光敏三极管9-cos光敏三极管

在轴环式数显表中,定片(指示光栅)固定,动片(主光栅)可与外接旋转轴相联并转动。

动片边沿被均匀地镂空出500条透光条纹,见图11-17b的A放大图。

定片为圆弧形薄片,在其表面刻有两组与动片相同间隔的透光条纹(每组3条),定片上的条纹与动片上的条纹成一角度θ。

两组条纹分别与两组红外发光二极管和光敏三极管相对应。

当动片旋转时,产生的莫尔条纹亮暗信号由光敏三极管接收,相位正好相差π/2,即第一个光敏三极管接收到正弦信号,第二个光敏三极管接收到余弦信号。

经整形电路处理后,两者仍保持相差1/4周期的相位关系。

再经过细分及辨向电路,根据运动的方向来控制可逆计数器做加法或减法计数,测量电路框图如图11-17c所示。

测量显示的零点由外部复位开关完成。

光栅型轴环式数显表可以安装在中小型机床的进给手轮(刻度轮)的位置,可以直接读出进给尺寸,减少停机测量的次数,从而提高工作效率和加工精度。

第四节磁栅传感器

磁栅与其他类型的位置检测元件相比,结构简单,录磁方便,测量范围宽(可达十几米),但要注意防止退磁和定期更换磁头。

磁栅分类:

长磁栅和圆磁栅。

长磁栅用于直线位移测量,圆磁栅主要用于角位移测量。

一、磁栅结构:

磁尺、磁头和信号处理电路组成。

1.磁尺

磁尺按基体形状有带状磁尺、线状磁尺(又称同轴型)和圆形磁尺,如图11-20所示。

通过录磁磁头在磁尺上录制出节距严格相等的磁信号作为计数信号。

节距(栅距)W通常为0.05mm、0.1mm、0.2mm。

2.磁头

为了辨别磁头运动的方向,采用两只磁头(sin、cos磁头)来拾取信号。

它们相互距离为(m

1/4)W,m为整数。

为了保证距离的准确性,通常将两个磁头做成一体。

二、磁栅数显表及其应用

磁头、磁尺与专用磁栅数显示表配合,可用于检测机械位移量,其行程可达数十米,分辨力优于1μm。

图11-22ZCB-101鉴相型磁栅数显表的原理框图

功能:

直径/半径、公制/英制转换及显示功能、数据预置功能、断电记忆功能、超限报警功能、非线性误差修正功能、故障自检功能等。

能同时测量x、y、z三个方向的位移

磁敏电阻磁头:

可不必设置励磁电路,检测速度提高。

第五节容栅传感器

容栅:

是一种基于变面积工作原理的电容传感器。

因为它的电极排列如同栅状,故称此类传感器为容栅传感器。

精度稍差,但造价低、耗电省,应用于电子数显卡尺、千分尺、高度仪、坐标仪和机床行程的测量中。

一、结构及工作原理

容栅传感器分类:

直线容栅、圆容栅和圆筒容栅。

直线容栅和圆筒容栅用于直线位移的测量,圆容栅用于角位移的测量。

图11-23直线型容栅传感器结构简图

a)定尺、动尺上的电极b)定尺、动尺的位置关系c)发射电极和反射电极的相互关系

1-反射电极2-屏蔽电极3-接收电极4-发射电极

容栅传感器由动尺和定尺组成,两者保持很小的间隙δ。

一般用于数显卡尺的容栅的节距W=0.635mm(25毫英寸),最小分辨力为0.01mm,非线性误差小于0.01mm,在150mm范围内的总测量误差为0.02~0.03mm。

二、容栅传感器在数显尺中的应用

容栅定尺安装在尺身上,动尺与单片测量转换电路(专用IC)安装在游标上,分辨力为0.01mm,重复精度0.02mm。

功能:

自动断电,因此1.5V氧化银扣式电池可使用一年以上。

通过复位按钮可在任意位置置零,消除累积误差;

可通过公/英制转换钮实现公/英制转换;

通过串行接口可与计算机或打印机相连,经软件处理,可对测量数据进行统计处理。

课外学习指导

安排每周二下午进行答疑

课堂补充作业

——

课外作业

P260:

3、9(机械专业),其余作为讨论内容。

检测教学目标实现程度

考察学生能否掌握辨向、细分和有关的计算。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1