内存核心频率工作频率等效频率预读取技术详解共15页.docx

上传人:b****6 文档编号:5737467 上传时间:2022-12-31 格式:DOCX 页数:15 大小:37.06KB
下载 相关 举报
内存核心频率工作频率等效频率预读取技术详解共15页.docx_第1页
第1页 / 共15页
内存核心频率工作频率等效频率预读取技术详解共15页.docx_第2页
第2页 / 共15页
内存核心频率工作频率等效频率预读取技术详解共15页.docx_第3页
第3页 / 共15页
内存核心频率工作频率等效频率预读取技术详解共15页.docx_第4页
第4页 / 共15页
内存核心频率工作频率等效频率预读取技术详解共15页.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

内存核心频率工作频率等效频率预读取技术详解共15页.docx

《内存核心频率工作频率等效频率预读取技术详解共15页.docx》由会员分享,可在线阅读,更多相关《内存核心频率工作频率等效频率预读取技术详解共15页.docx(15页珍藏版)》请在冰豆网上搜索。

内存核心频率工作频率等效频率预读取技术详解共15页.docx

内存核心频率工作频率等效频率预读取技术详解共15页

内存核心(héxīn)频率、工作频率,等效频率、预读取技术详解

■何为(héwéi)内存频率

 对于(duìyú)内存条,相信大家并不陌生。

因为内存已经成为每台电脑的必备配件,从EDO、SDRAM、DDR、DDR2再到现如今的DDR3内存,变化可谓是翻天覆地。

内存无论是在容量、速度、性能上都有了显著的提高。

    但是内存市场中,产品可谓是型号众多,比如DDR2667、DDR2800、DDR31600等等,这些各式各样的各种专业术语让很多读者感到无所适从。

因此,本篇文章,编辑将向大家介绍一下关于内存频率的一些相关知识,相信看本文,你就会对内存频率有了一定了解。

    其实通俗的讲,内存的频率和CPU的主频一样,一般是被用来表示内存的速度,也就是说它代表着该内存所能达到的最高工作频率。

内存主频是以MHz(兆赫)为单位来计算的。

内存主频频率越高,在一定程度上也就代表着内存所能达到的速度越快,内存主频还决定着该款内存最高能在什么样的频率下正常工作。

    也许有的读者会以为,DDR2800的内存,核心频率就是800MHz,如果是这样理解的话,那就是大错特错了。

因此,我们还有必要了解一下内存颗粒的核心频率,它并非你想想的那么简单。

■内存颗粒的核心频率

    内存颗粒的核心频率是固定的,一些常见的内存颗粒核心频率如下。

    DDR266、DDR2533、DDR31066颗粒的核心(héxīn)频率为133MHz,DDR333、DDR2667、DDR31333颗粒的核心频率为166MHz,DDR400、DDR2800、DDR31600的核心频率为200MHz。

    为了让大家更加直观的看出核心频率,编辑制作了一张表格,包括了目前主流(zhǔliú)DDR2内存的相关参数。

内存规格

颗粒核心频率MHz

颗粒工作频率MHz

等效频率MHz

DDR266/333/400

133/166/200

266/333/400

266/333/400

DDR2533/667/800

133/166/200

266/333/400

533/667/800

DDR31066/1333/1600

133/166/200

266/333/400

1066/1333/1600

    相信用心(yòngxīn)的读者可能会发现,在DDR、DDR2、DDR3内存中一个有趣的现象,我们以DDR400、DDR2800、DDR31600这三款内存为例,他们的核心频率都是倍数关系,也就是400MHz的一半即200MHz。

DDR、DDR2、DDR3他们相同之处就在于(zàiyú)改进了了SDRAM的在一个周期内只能在升的时候进行数据传输的弊端,他们都可以在升和降两个阶段进行数据传输,所以工作频率扩大一倍。

但是他们不同的在于他们的预读取的能力不相同,DDR预读取2bit,DDR2预读取4bit,DDR3预读取8bit,所以在内存颗粒的核心频率相同的时候,DDR的等效频率是核心颗粒频率的2倍,DDR2是四倍,DDR3是八倍。

也就是DDR系列的内存有两个地方提升了频率,第一、一个时间周期内进行两次数据传输提升了工作频率。

第二、增加了预读取技术提升了等效频率,而计算内存带宽的时候用到的就是等效频率。

    看完了核心频率的介绍,也许有的读者还是一头雾水,编辑怎么到现在都还没有说明DDR2800内存中,“800MHz”的来历呢?

别着急,因为只有你先了解了核心频率,才能明白这“800MHz”。

■内存的工作频率

    下面(xiàmian)要出场的是内存(nèicún)的工作频率,内存的工作频率有一个很简单的计算公式:

内存工作频率=内存颗粒核心频率x2,前面我们提到(tídào)了,DDR2800内存的核心频率为200MHz,因此,计算工作频率就是200MHzx2=400MHz。

    也许有的读者会问,为什么会是两倍呢?

原来,它和内存数据传输的原理有关。

    在上面的这张示意图中,T就表示为内存的一个工作周期。

以前的内存一个周期就只是在AB上升处传输数据,速度较慢,而后来DDR内存就进行了改进。

不仅在AB段传输数据,还在CD下降段传输数据。

就相当于一个周期内进行传输了两次数据,因此DDR工作频率就翻倍了。

    到目前位置,迷底还是没有揭开,在下一页,你就会了解到DDR2800内存的真正由来。

■内存的等效频率

    内存的等效频率才是DDR2800内存中,“800MHz”的真正含义。

等效频率和内存预读有关,那么内存预读又是怎么回事呢?

我们可以举一个简单的例子,比如说运动场上的运动员在跑步,有速度快慢之分。

跑的快的通常是迈的步伐大,而且步伐的距离长。

假设这名运动员每1秒钟跑了一步,步伐的距离为一米,我们就可以算出,速度为1米/秒。

而第二个人每1秒钟跑了2步,步伐的距离为2米,他的速度则是2米/秒。

    因此我们可以理解为DDR2内存比DDR内存快的原因了,DDR内存的预读取是2bit,DDR2的预读取是4bit,DDR3则提升为8bit。

因此,只要是内存颗粒的工作频率相同,DDR2的等效频率就是DDR等效频率的2倍,DDR3则是DDR的4倍。

以DDR2800为例,前面已经算出来了它的工作频率为200MHzx2=400MHz,因此400MHzx2,得到的800MHz就是DDR2800内存名称的真正由来,DDR2800指的是内存的等效频率

■内存超频的小知识

    相信看了上面(shàngmiɑn)的内容,你已经对内存(nèicún)的一些知识有了一些了解。

有的读者可能还有所疑问,为什么内存可以(kěyǐ)进行超频呢?

    大家都知道,内存条上的内存颗粒,一般都是由流水线上成批生产的,在每一颗内存颗粒产品生产完成后,内存颗粒厂商都会对内存颗粒进行相关的测试。

比如可以成功的在800MHz下运行,那么这条颗颗粒就是被标注成DDR2800。

同样的道理,如果只能稳定的运行在667MHz下,这个颗粒就被标注为DDR2667。

    在这些经过测试的内存颗粒中,有一部分是超频能力很强的颗粒,就会以较高价格出售给一些大的内存模组厂商,如金士顿等等,厂商再用来生产出超频专用内存条。

因此,市场中的内存条几乎都可以进行小幅度的超频,运气好的话还能得到不少的提升。

 

 为什么我们会说频率乱如麻?

主要原因是人们在交谈中常常把内存频率、颗粒频率、等效频率等胡乱用。

新接触电脑的朋友们一听到这么多版本的频率,头怎会不疼呢?

       首先搞清楚内存的三个频率,核心频率,工作频率,等效频率(也成接口频率),平时常说的DDR2 800中的那个800就是该内存的等效频率(接口频率),也是最有意义的频率,和内存总线的带宽直接挂钩,比如说DDR2 800的带宽算法就是800mhz*64/8,也就是6.4GB/S。

而工作频率则是用等效频率除以2,这对DDR,DDR2,DDR3都适用(对SD内存无效,不过SD内存早就淘汰了,这里不作研究)且在CPU-Z中显示的内存频率也是工作频率。

 先为理解打基础

  1.内存频率是什么

  我们平时挂在嘴边的DDR2800、DDR2667后面的800和667就是内存频率值。

内存频率通常以MHz(兆赫兹)为单位来计量,内存频率在一定程度上决定了内存的实际性能,内存频率越高,说明该内存在正常工作下的速度越快。

比如DDR2800就表示这根内存条的频率为800MHz,在其他参数相同的情况下,它就比DDR2667(频率为667MHz)性能要好。

  小贴士:

只要内存(nèicún)延迟数值相差很小,比如5和6,那么它们对内存的性能影响就很小。

反之如果内存延迟数值相差过大,那对内存的性能影响我们就不能不考虑了。

总体上来说,随着内存频率的提升,会使内存延迟数值(shùzí)上升。

所以与DDR400内存相比,尽管DDR2533频率高一些(yīxiē),但一些DDR内存具备了较低的延时参数,所以其性能与普通的DDR2533性能相差不大。

  2.内存(nèicún)频率的由来

  知道CPU主频是如何标上去的吗?

同一批生产的CPU,在标上型号前,它们都是“一奶同母的N胞胎”,除了主频不同之外,其他参数都相同。

比如当同一批次的Intel Core2DuoE4000系列生产好以后,厂家就会对这些产品进行测试。

如果这块CPU的主频能稳定达到某个频率,而这个频率正好是目前现有甲型号CPU的水平,那么它的型号就是“甲”。

如果达到另外一个频率且正好是目前乙型号CPU的水平,厂家就命名为“乙”。

以此类推,这样这一批次的所有CPU都定了型号。

  内存也是如此,当同一批的内存颗粒没有打上标记之前,大家都是“N胞胎”,然后像三星、现代等内存颗粒生产厂就会对内存颗粒进行测试,如果这个颗粒能稳定跑到DDR2800的水平,那么它就会被命名为DDR2800。

DDR2667和DDR2533命名同样如此。

  小贴士:

在内存颗粒厂商测试过程中,肯定会测试到能够稳定运行在比DDR2800更高的频率上的内存颗粒。

由于它的性能好,那么内存颗粒厂商就会以高价格卖给像金士顿、宇瞻等内存模组厂商。

模组厂商购买了这些颗粒之后,也会挑选一些质量好的电子元器件与之搭配,这样一根超频性能很好的内存就出现在了市场上,价格也比普通内存高很多。

 

超频内存套装价格不低

 

  哪些频率常乱用

  介绍了内存频率的由来,下面我们就开始学习几种(jǐzhǒnɡ)内存频率的关系。

目前,网上和平时常用错的内存频率有等效频率、内存工作频率、颗粒核心频率三种。

●SDR和DDR1/2/3全系列频率(pínlǜ)对照表:

  1.颗粒核心(héxīn)频率

  从核心频率这四个字就知道了这是内存频率的基础(jīchǔ),什么等效频率、工作频率都是在它的基础上得出来的。

大家一定要记住下面这几个核心频率,DDR266/DDR2533/DDR31066核心频率为133MHz,DDR333/DDR2667/DDR31333核心频率为166MHz,DDR400/DDR2800/DDR31600核心频率为200MHz,DDR系列的

  小贴士:

非常规记忆法

  目前对于DDR、DDR2、DDR3适用。

三代内存只要它们后面跟的数值是成倍数关系的,那么它们的颗粒内部频率就相等,并且它们颗粒内部频率的数值等于DDR后面跟的数值的一半。

比如DDR400、DDR2800、DDR31600,它们后面的数值400、800和1600就成了倍数关系,那它们颗粒内部频率的数值为DDR400中的400的一半,即200。

  2.工作频率

  大家记住的核心频率,马上就会在学习内存工作频率过程中派上用场。

内存工作频率是颗粒核心频率的两倍。

比如DDR400、DDR2800、DDR31600的核心频率为200MHz,那么这三个内存颗粒的工作频率就是400MHz(数值正好等于DDR400中的400)。

为什么是两倍?

其实它和DDR内存的数据传输原理有关。

  双倍是指在一个时钟周期内传输两次数据,在时钟的上升期和下降期各传输一次数据(通过差分(chàfēn)时钟技术实现),在存储阵列频率不变的情况下,数据传输率达到了SDR的两倍,此时就需要I/O从存储阵列中预取2bit数据(shùjù),因此I/O的工作频率是存储阵列频率的两倍。

 

  3.等效(děnɡxiào)频率

  最后(zuìhòu)我们再谈谈等效频率,其实它才是DDR2800中800MHz的正规名称。

准确点说,它和内存的预读取有关。

 

内存标贴上的频率是等效频率

 

  理解预读取并不难,同样打个比方,看一个人跑得快或不快,要看两个方面,一个是步伐的频率,比如每秒钟跑两步;另一个是步伐的距离,比如每一步跑1米。

第一个人(DDR)它每秒钟跑两步,每步是1米,所以它的速度是2米/秒;而第二个人(DDR2)它每秒钟跑两步(因为DDR2和DDR内存颗粒的工作频率一致),每步是两米,所以它的速度是4米/秒。

第二个人的速度是第一个人的两倍。

  内存也是如此,DDR、DDR2、DDR3内存颗粒工作频率一致,所以速度的快慢就取决于DDR的步伐(预读取),DDR的预读取为2bit,这就是数据传输的带宽(每步距离)。

而DDR2的预读取是4bit(DDR3为8bit),说明DDR2的“每步距离”是DDR的两倍,所以只要内存颗粒工作频率一致,DDR2等效频率是DDR等效频率的2倍,DDR3就是DDR的4倍。

  总结

  讲了这么多,最后把几种内存频率的关系总结在下表中。

大家可以通过表中内容得知,等效频率就是我们平时说的频率,比如DDR2800等效频率就是800MHz;虽然DDR266、DDR2533、DDR31066等效频率相同,但由于DDR、DDR2、DDR3的预读取不同,所以DDR266、DDR2533、DDR31066的颗粒频率虽同为266MHz;内存颗粒核心频率为内存颗粒工作频率的一半。

 

外频

外频是由主板为CPU提供的基准时钟频率,一般常见的有100、133、166、200。

我们说的FSB(Front System Bus)指的是系统前端总线,它是处理器与主板北桥芯片或内存控制集线器之间的数据通道,常见频率有400、333、533、800。

作为新手不必掌握那么多概念性的东西,只要记住以下几个公式:

主频=外频*倍频(MHz)

IntelCPU前端总线=外频*4(MHz)

AMDCPU前端总线=外频*2(MHz)

CPU数据带宽=前端总线*8(MB/s)

内存带宽=内存等效工作频率*8(MB/s)

前端总线频率 

     总线是将信息以一个或多个源部件传送到一个或多个目的部件的一组传输线。

通俗的说,就是多个部件间的公共连线,用于在各个部件之间传输信息。

人们常常以MHz表示的速度来描述总线频率。

总线的种类很多,前端总线的英文名字是Front Side Bus,通常用FSB表示,是将CPU连接到北桥芯片的总线。

计算机的前端总线频率是由CPU和北桥芯片共同决定的。

 

      北桥芯片负责联系内存、显卡等数据吞吐量最大的部件,并和南桥芯片连接。

CPU就是通过前端总线(FSB)连接到北桥芯片,进而通过北桥芯片和内存、显卡交换数据。

前端总线是CPU和外界交换数据的最主要通道,因此前端总线的数据传输能力对计算机整体性能作用很大,如果没足够快的前端总线,再强的CPU也不能明显提高计算机整体速度。

数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率,即数据带宽=(总线频率×数据位宽)÷8。

目前PC机上所能达到的前端总线频率有266MHz、333MHz、400MHz、533MHz、800MHz几种,最高到1066MHz。

前端总线频率越大,代表着CPU与北桥芯片之间的数据传输能力越大,更能充分发挥出CPU的功能。

现在的CPU技术发展很快,运算速度提高很快,而足够大的前端总线可以保障有足够的数据供给给CPU,较低的前端总线将无法供给足够的数据给CPU,这样就限制了CPU性能得发挥,成为系统瓶颈。

 

外频与前端总线频率的区别

       前端总线的速度指的是CPU和北桥芯片间总线的速度,更实质性的表示了CPU和外界数据传输的速度。

而外频的概念是建立在数字脉冲信号震荡速度基础之上的,也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一万万次,它更多的影响了PCI及其他总线的频率。

之所以前端总线与外频这两个概念容易混淆,主要的原因是在以前的很长一段时间里(主要是在Pentium 4出现之前和刚出现Pentium 4时),前端总线频率与外频是相同的,因此往往直接称前端总线为外频,最终造成这样的误会。

随着计算机技术的发展,人们发现前端总线频率需要高于外频,因此采用了QDR(Quad Date Rate)技术,或者其他类似的技术实现这个目的。

这些技术的原理类似于AGP的2X或者4X,它们使得前端总线的频率成为外频的2倍、4倍甚至更高,从此之后前端总线和外频的区别才开始被人们重视起来,目前的主流产品均采用这些技术。

DDR和DDR2内存说明

DDR传输标准   

      严格的说DDR应该叫DDR SDRAM,人们习惯称为DDR,部分初学者也常看到DDR SDRAM,就认为是SDRAM。

DDR SDRAM是Double Data Rate SDRAM的缩写,是双倍速率同步动态随机存储器的意思。

DDR内存是在SDRAM内存基础上发展而来的,仍然沿用SDRAM生产体系,因此对于内存厂商而言,只需对制造普通SDRAM的设备稍加改进,即可实现DDR内存的生产,可有效的降低成本。

      SDRAM在一个时钟周期内只传输一次数据,它是在时钟的上升期进行数据传输;而DDR内存则是一个时钟周期内传输两次次数据,它能够在时钟的上升期和下降期各传输一次数据,因此称为双倍速率同步动态随机存储器。

DDR内存可以在与SDRAM相同的总线频率下达到更高的数据传输率。

 与SDRAM相比:

DDR运用了更先进的同步电路,使指定地址、数据的输送和输出主要步骤既独立执行,又保持与CPU完全同步;DDR使用了DLL(Delay Locked Loop,延时锁定回路提供一个数据滤波信号)技术,当数据有效时,存储控制器可使用这个数据滤波信号来精确定位数据,每16次输出一次,并重新同步来自不同存储器模块的数据。

DDR本质上不需要提高时钟频率就能加倍提高SDRAM的速度,它允许在时钟脉冲的上升沿和下降沿读出数据,因而其速度是标准SDRA的两倍。

 

       从外形体积上DDR与SDRAM相比差别并不大,他们具有同样的尺寸和同样的针脚距离。

但DDR为184针脚,比SDRAM多出了16个针脚,主要包含了新的控制、时钟、电源和接地等信号。

DDR内存采用的是支持2.5V电压的SSTL2标准,而不是SDRAM使用的3.3V电压的LVTTL标准。

 

     DDR内存的频率可以用工作频率和等效频率两种方式表示,工作频率是内存颗粒实际的工作频率,但是由于DDR内存可以在脉冲的上升和下降沿都传输数据,因此传输数据的等效频率是工作频率的两倍。

 

     PC1600如果按照传统习惯传输标准的命名,PC1600(DDR200)应该是PC200。

在当时DDR内存正在与RDRAM内存进行下一代内存标准之争,此时的RDRAM按照频率命名应该叫PC600和PC800。

这样对于不是很了解的人来说,自然会认为PC200远远落后于PC600,而JEDEC基于市场竞争的考虑,将DDR内存的命名规范进行了调整。

传统习惯是按照内存工作频率来命名,而DDR内存则以内存传输速率命名。

因此才有了今天的PC1600、PC2100、PC2700、PC3200、PC3500等(在用CPU-Z工具查看机器时,在SPD中显示的最大带宽)。

 

    PC1600的实际工作频率是100 MHz,而等效工作频率是200 MHz,那么它的数据传输率就为“数据传输率=频率*每次传输的数据位数”,就是200MHz*64bit=12800Mb/s,再除以8就换算为MB为单位,就是1600MB/s,从而命名为PC1600。

 

DDR2传输标准  

       DDR2可以看作是DDR技术标准的一种升级和扩展:

DDR的核心频率与时钟频率相等,但数据频率为时钟频率的两倍,也就是说在一个时钟周期内必须传输两次数据。

而DDR2采用“4 bit Prefetch(4位预取)”机制,核心频率仅为时钟频率的一半、时钟频率再为数据频率的一半,这样即使核心频率还在200MHz,DDR2内存的数据频率也能达到800MHz—也就是所谓的DDR2 800。

 

目前,已有的标准DDR2内存分为DDR2 400和DDR2 533,DDR2 667和DDR2 800,其核心频率分别为100MHz、133MHz、166MHz和200MHz,其总线频率(时钟频率)分别为200MHz、266MHz、333MHz和400MHz,等效的数据传输频率分别为400MHz、533MHz、667MHz和800MHz,其对应的内存传输带宽分别为3.2GB/sec、4.3GB/sec、5.3GB/sec和6.4GB/sec,按照其内存传输带宽分别标注为PC2 3200、PC2 4300、PC2 5300和PC2 6400。

欢迎(huānyíng)浏览 雅心楼 个人图书馆的文章(wénzhāng),想收藏这篇好文章吗?

花一分钟

吧!

预读取技术(jìshù)

 4-bitprefetchDDR2提高(tígāo)带宽的关键技术

  现在的DRAM内部都采用4个bank的结构,每个bank由存储单元(cell)队列构成,存储单元队列通过行(row)和列(column)地址定位。

让我们看看基本的内存读操作的工作流程:

首先是命令和地址信息输入,经过地址解码器分解成bank(段)和Word(字)选择,Word选择就是行选择,之后是对存储单元进行再存储(Restore)和预充电(Precharge)。

然后是Column(列)选择,到此为止存储单元(cell)已经被定位。

存储单元的数据被输出到内部数据总线(InternalDataBus),最后通过输出电路输出数据。

  从内存的读操作中可以了解到内存工作的几个瓶颈,它们分别是内存单元的再存储和预充电的延时,这个延迟属于bank内部的延迟,由于DRAM结构的限制这个延迟本身不太好解决。

还有内部数据总线(InternalDataBus)的频率限制,内部数据总线是连接DRAM颗粒中4个bank的总线,最后一个DRAM的瓶颈是输入/输出电路的延迟。

  对于内部数据总线频率较低的瓶颈,可以通过使用Prefetch(数据预取)架构来解决,举例来说PC133SDRAM采用了管线突发架构(Pipeline)或者说是1bitPrefetch,因此它内部数据总线的频率是133MHz和数据输出端的数据传输率是一样的。

DDR内存采用了2bitPrefetch技术,因此它输出端的数据传输率是内部数据总线频率的2倍,以DDR400为例,它的内部数据总线的频率是200MHz,而输出端的数据传输率达到了400MHz。

  我们知道DRAM内部存储单元的频率提高比较困难且成本较高,DDR333的核心频率已经达到了167MHz,为了解决外部数据传输率和核心速度之间的矛盾,DDR2采用了4bitPrefetch(数据预取架构),因此DDR2400的核心频率仅为100MHz,DDR2533的核心频率为133MHz,因此DDR2很好的解决了DRAM核心频率和外部数据传输频率之间的问题。

  从SDRAM开始,内存就可以和时钟同步,最初的SDRAM采用了管线架构(Pipelinearchitecture),首先是地址(dìzhǐ)信号(Add)和时钟(CLK)同步,地址信号经过译码选取内存队列中相应的单元,内存队列中选中的数据通过内部数据总线输出到信号放大电路。

SDRAM的信号输出部分也是和时钟信号同步的,这就好象一条连续的管线一样。

由于全部操作都和时钟同步,因此也叫同步内存。

  DDR采用了2位预取(2-bitprefetch),也就是2:

1的数据预取,2bit预取架构允许内部的队列(duìliè)(column)工作频率仅仅为外部数据传输频率的一半。

在SDRAM中数据传输率完全参考时钟信号,因此数据传输率和时钟频率一样。

D

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1