经典数学悖论.docx

上传人:b****6 文档编号:5638657 上传时间:2022-12-29 格式:DOCX 页数:13 大小:30.08KB
下载 相关 举报
经典数学悖论.docx_第1页
第1页 / 共13页
经典数学悖论.docx_第2页
第2页 / 共13页
经典数学悖论.docx_第3页
第3页 / 共13页
经典数学悖论.docx_第4页
第4页 / 共13页
经典数学悖论.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

经典数学悖论.docx

《经典数学悖论.docx》由会员分享,可在线阅读,更多相关《经典数学悖论.docx(13页珍藏版)》请在冰豆网上搜索。

经典数学悖论.docx

经典数学悖论

经典数学悖论

古今中外有不少著名的悖论,它们震撼了逻辑和数学的基础,激发了人们求知和精密的思考,吸引了古往今来许多思想家和爱好者的注意力。

解决悖论难题需要创造性的思考,悖论的解决又往往可以给人带来全新的观念。

本文将根据悖论形成的原因,粗略地把它归纳为六种类型,分上、中、下三个部份。

这是第一部份:

由概念自指引发的悖论和引进无限带来的悖论

(一)由自指引发的悖论

以下诸例都存在着一个概念自指或自相关的问题:

如果从肯定命题入手,就会得到它的否定命题;如果从否定命题入手,就会得到它的肯定命题。

1-1谎言者悖论

公元前六世纪,哲学家克利特人艾皮米尼地斯(Epimenides):

“所有克利特人都说谎,他们中间的一个诗人这么说。

”这就是这个著名悖论的来源。

《圣经》里曾经提到:

“有克利特人中的一个本地中先知说:

‘克利特人常说谎话,乃是恶兽,又馋又懒’”(《提多书》第一章)。

可见这个悖论很出名,但是保罗对于它的逻辑解答并没有兴趣。

人们会问:

艾皮米尼地斯有没有说谎?

这个悖论最简单的形式是:

1-2“我在说谎”

如果他在说谎,那么“我在说谎”就是一个谎,因此他说的是实话;但是如果这是实话,他又在说谎。

矛盾不可避免。

它的一个翻版:

1-3“这句话是错的”

这类悖论的一个标准形式是:

如果事件A发生,则推导出非A,非A发生则推导出A,这是一个自相矛盾的无限逻辑循环。

拓扑学中的单面体是一个形像的表达。

哲学家罗素曾经认真地思考过这个悖论,并试图找到解决的办法。

他在《我的哲学的发展》第七章《数学原理》里说道:

“自亚里士多德以来,无论哪一个学派的逻辑学家,从他们所公认的前提中似乎都可以推出一些矛盾来。

这表明有些东西是有毛病的,但是指不出纠正的方法是什么。

在1903年的春季,其中一种矛盾的发现把我正在享受的那种逻辑蜜月打断了。

他说:

谎言者悖论最简单地勾画出了他发现的那个矛盾:

“那个说谎的人说:

‘不论我说什么都是假的’。

事实上,这就是他所说的一句话,但是这句话是指他所说的话的总体。

只是把这句话包括在那个总体之中的时候才产生一个悖论。

”(同上)

罗素试图用命题分层的办法来解决:

“第一级命题我们可以说就是不涉及命题总体的那些命题;第二级命题就是涉及第一级命题的总体的那些命题;其余仿此,以至无穷。

”但是这一方法并没有取得成效。

“1903年和1904年这一整个时期,我差不多完全是致力于这一件事,但是毫不成功。

”(同上)

《数学原理》尝试整个纯粹的数学是在纯逻辑的前提下推导出来的,并且使用逻辑术语说明概念,回避自然语言的歧意。

但是他在书的序言里称这是:

“发表一本包含那么许多未曾解决的争论的书。

”可见,从数学基础的逻辑上彻底地解决这个悖论并不容易。

接下来他指出,在一切逻辑的悖论里都有一种“反身的自指”,就是说,“它包含讲那个总体的某种东西,而这种东西又是总体中的一份子。

”这一观点比较容易理解,如果这个悖论是克利特以为的什么人说的,悖论就会自动消除。

但是在集合论里,问题并不这么简单。

1-4理发师悖论

在萨维尔村,理发师挂出一块招牌:

“我只给村里所有那些不给自己理发的人理发。

”有人问他:

“你给不给自己理发?

”理发师顿时无言以对。

这是一个矛盾推理:

如果理发师不给自己理发,他就属于招牌上的那一类人。

有言在先,他应该给自己理发。

反之,如果这个理发师给他自己理发,根据招牌所言,他只给村中不给自己理发的人理发,他不能给自己理发。

因此,无论这个理发师怎么回答,都不能排除内在的矛盾。

这个悖论是罗素在一九○二年提出来的,所以又叫“罗素悖论”。

这是集合论悖论的通俗的、有故事情节的表述。

显然,这里也存在着一个不可排除的“自指”问题。

1-5集合论悖论

“R是所有不包含自身的集合的集合。

人们同样会问:

“R包含不包含R自身?

”如果不包含,由R的定义,R应属于R。

如果R包含自身的话,R又不属于R。

继罗素的集合论悖论发现了数学基础有问题以后,1931年歌德尔(KurtGodel,1906-1978,捷克人)提出了一个“不完全定理”,打破了十九世纪末数学家“所有的数学体系都可以由逻辑推导出来”的理想。

这个定理指出:

任何公设系统都不是完备的,其中必然存在着既不能被肯定也不能被否定的命题。

例如,欧氏几何中的“平行线公理”,对它的否定产生了几种非欧几何;罗素悖论也表明集合论公理体系不完备。

1-6书目悖论

一个图书馆编纂了一本书名词典,它列出这个图书馆里所有不列出自己书名的书。

那么它列不列出自己的书名?

这个悖论与理发师悖论基本一致。

1-7苏格拉底悖论

有“西方孔子”之称的雅典人苏格拉底(Socrates,公元前470-前399)是古希腊的大哲学家,曾经与普洛特哥拉斯、哥吉斯等著名诡辩家相对。

他建立“定义”以对付诡辩派混淆的修辞,从而勘落了百家的杂说。

但是他的道德观念不为希腊人所容,竟在七十岁的时候被当作诡辩杂说的代表。

在普洛特哥拉斯被驱逐、书被焚十二年以后,苏格拉底也被处以死刑,但是他的学说得到了柏拉图和亚里斯多德的继承。

苏格拉底有一句名言:

“我只知道一件事,那就是什么都不知道。

这是一个悖论,我们无法从这句话中推论出苏格拉底是否对这件事本身也不知道。

古代中国也有一个类似的例子:

1-7“言尽悖”

这是《庄子·齐物论》里庄子说的。

后期墨家反驳道:

如果“言尽悖”,庄子的这个言难道就不悖吗?

我们常说:

1-7“世界上没有绝对的真理”

我们不知道这句话本身是不是“绝对的真理”。

1-8“荒谬的真实”

有字典给悖论下定义,说它是“荒谬的真实”,而这种矛盾修饰本身也是一种“压缩的悖论”。

悖论(paradox)来自希腊语“para+dokein”,意思是“多想一想”。

这些例子都说明,在逻辑上它们都无法摆脱概念自指所带来的恶性循环。

1.唐·吉诃德悖论

小说《唐·吉诃德》里描写过一个国家,它有一条奇怪的法律,每个旅游者都要回答一个问题:

“你来这里做什么?

”回答对了,一切都好办;回答错了,就要被绞死。

一天,有个旅游者回答:

“我来这里是要被绞死。

旅游者被送到国王那里。

国王苦苦想了好久:

他回答得是对还是错?

究竟要不要把他绞死。

如果说他回答得对,那就不要绞死他——可这样一来,他的回答又成了错的了!

如果说他回答错了,那就要绞死他——但这恰恰又证明他回答对了。

实在是左右为难!

2.梵学者的预言

一天,梵学者与他的女儿苏耶发生了争论。

苏椰:

你是一个大骗子,爸爸。

你根本不能预言未来。

学者:

我肯定能。

苏椰:

不,你不能。

我现在就可以证明它!

苏椰在一张纸上写了一些字,折起来,压在水晶球下。

她说:

“我写了一件事,它在3点钟前可能发生,也可能不发生。

请你预言它究竟是不是会发生,在这张白卡片上写下‘是’字或‘不’字。

要是你写错了,你答应现在就买辆汽车给我,不要拖到以后好吗?

“好,一言为定。

”学者在卡片上写了一个字。

3点钟时,苏椰把水晶球下面的纸拿出来,高声读道:

“在下午3点以前,你将写一个‘不’字在卡片上。

学者在卡片上写的是“是”字,他预言错了:

“在下午3点以前,写一个‘不’字在卡片上”这一件事并未发生。

但如果他在卡片上写的是“不”呢?

也还错!

因为写“不”就表示他预言卡片上的事不会发生,但它恰恰发生了——他在卡片上写的就是一个‘不’字。

苏椰笑了:

“我想要一辆红色的赛车,爸爸,要带斗形座的。

3.意想不到的老虎

公主要和迈克结婚,国王提出一个条件:

“我亲爱的,如果迈克打死这五个门后藏着的一只老虎,你就可以和他结婚。

迈克必须顺次序开门,从1号门开始。

他事先不知道哪个房间里有老虎,只有开了那扇门才知道。

这只老虎的出现将是料想不到的。

迈克看着这些门,对自己说道:

“如果我打开了四个空房间的门,我就会知道老虎在第五个房间。

可是,国王说我不能事先知道它在哪里,所以老虎不可能在第五个房间。

“五被排除了,所以老虎必然在前四个房间内。

同样的推理,老虎也不会在最后一个房间——第四间内。

按同样的理由推下去,迈克证明老虎不能在第三、第二和第一个房间。

迈克十分快乐,他满怀信心地去看门。

使他惊骇的是,老虎从第二个房间跳了出来。

迈克的推理并没有错,但他失败了。

老虎的出现完全出乎意料,表明国王遵守了他的诺言。

也许,迈克进行推理的本身就与国王关于老虎“料想不到”的条件发生了矛盾。

迄今为止,逻辑学家对于迈克究竟错在哪里还末得到一致意见。

4.钱包游戏

史密斯教授和两个学生一道吃午饭。

教授说:

“我来告诉你们一个新游戏。

把你们的钱包放在桌子上,我来数里面的钱。

钱少的人可以赢掉另一个钱包中的所有钱。

学生甲想:

“如果我的钱多,就会输掉我这些钱;如果他的多,我就会赢多于我的钱。

所以赢的要比输的多,这个游戏对我有利。

同样的道理,学生乙也认为这个游戏对他有利。

请问,一个游戏怎么会对双方都有利呢?

5.一块钱哪儿去了?

一个唱片商店里,卖30张老式硬唱片,一块钱两张;另外30张软唱片是一块钱三张。

那天,这60张唱片卖光了。

30张硬唱片收入15元,30张软唱片收入10元,总共是25元。

第二天,老板又拿出60张唱片。

他想:

“如果30张唱片是一块钱卖两张,30张是一块钱卖三张,何不放在一起,两块钱卖5张呢?

”这一天,60张唱片全按两块钱5张卖出去了。

老板点钱时才发现,只卖得24元,而不是25元。

这一块钱到哪儿去了呢?

6.惊人的编码

外星的一位科学家基塔先生,来到地球收集人类的资料,遇到了赫尔曼博士。

赫尔曼:

“你何不带一套大英百科全书回去?

这套书最全面地汇总了我们的所有知识。

基塔:

“可惜,我带不走那么重的东西。

不过,我可以把整套百科全书编码,然后只要在这根金属棒上作个标记,就代表了百科全书中的全部信息。

”真是再简单不过了!

基塔先生是怎样做到的呢?

基塔:

“我先把每个字母、数字、符号,都用一个数来代表,零用来隔开它们。

例如cat一词就编为3-0-1-0-22。

我用高级袖珍计算机快速扫描,就能把百科全书的全部内容转变为一个庞大的数字。

前面加一个小数点,就使它变成了一个十进制的分数,例如0.2015015011……

基塔先生在金属棒上找到了一个点,这个点将棒分为a和b两段,而a/b刚好等于上面那个十进制分数值。

基塔:

“回去后,测出a和b的值,就求出了它们的比值;根据编码的规定,你们的百科全书就被破译出来了。

这样,基塔离开地球时只带了一根金属棒,而他却已“满载而归”了!

7.不可逃遁的点

帕特先生沿着一条小路上山。

他早晨七点动身,当晚七点到达山顶。

第二天早晨沿同一小路下,晚上七点又回到山脚,遇见了拓扑学老师克莱因。

克莱因:

“帕特,你可曾知道你今天下山时走过这样一个地点,你通过这点的时刻恰好与你昨天上山时通过这点的时刻完全相同?

帕特:

“这绝不可能!

我走路时快时慢,有时还停下来休息。

克莱因:

“当你开始下山时,设想你有一个替身同时开始登山,这个替身登山的过程同你昨天登山时完全相同。

你和这个替身必定要相遇。

我不能断定你们在哪一点相遇,但一定会有这样一点。

……”

帕特明白了。

你明白了吗?

8.橡皮绳上的蠕虫

橡皮绳长1公里,一条蠕虫在它的一端。

蠕虫以每秒1厘米的稳定速度沿橡皮绳爬行;而橡皮绳每过1秒钟就拉长1公里。

如此下去,蠕虫最后究竟会不会到达终点呢?

乍一想,随着橡皮绳的拉伸,蠕虫离终点越来越远了。

但细心的读者会想到:

随着橡皮绳的每次拉伸,蠕虫也向前挪了。

如果用数学公式表示,蠕虫在第n秒未在橡皮绳上的位置,表示为整条绳的分数就是(推导过程从略):

当n足够大(约为e100000)时,上式的值就超过了1,也就是说蠕虫爬到了终点。

9.棘手的电灯

一盏电灯,用按钮来开关。

假定把灯拧开一分钟,然后关掉半分钟,再拧开1/4分钟,再关掉1/8分钟,如此往复,这一过程的末了恰好是两分钟。

那么,在这一过程结束时,电灯是开着,还是关着?

这个问题实在是难!

回数猜想

一提到李白,人们都知道这是我国唐代大诗人的名字。

如果把“李白”两字颠倒一下,变成“白李”,这也是一个人的名字,此人姓白名李。

像这样正着念、反着念都有意义的文字叫做“回文”。

王融作有《春游回文诗》;“风朝指锦幔,月晓照莲池。

”反过来读:

“池莲照晓月,幔锦指朝风。

”回文与数学里的“对称”相似。

如果一个数,从左右来读都一样,就称它为回文式数。

比如、101、32123、9999等都是回文式数。

数学中有名的“回数猜想”之谜,至今没有解决。

你任取一个数,再把这个数倒过来,并将这两个数相加;然后这个和数再倒过来,与原来的和数相加。

重复这个过程,一定能获得一个回文式数。

举个例了,比如68,按上述做法进行运算,只需要3步就可以得到一个回文式数1111。

68+86=154

154+451=605

605+506=1111

至今没有人能确定这个猜想是对还是错。

196这个三位数也许能成为“回数猜想”不成立的反证。

因为用电子计算机对这个数进行了几十万步计算,仍没有获得回文式数。

但是也没有人能证明这个数永远产生不了回文式数。

数学家对同时是质数的回文式数进行了研究,但是还没有人能证明这种想法是对的。

数学家还猜想有无穷个回文质数对,比如30103和30203,它们的特点是中间的数字是连续的,而其他数字都是相等的。

在回文式数中平方数是非常多的,比如:

121=11的平方

12321=111的平方

1234321=1111的平方

……

12345678987654321=111111111的平方

立方数也有类似情况,如:

1331=11的立方

1367631=111的立方

有趣的回文数,至今还有许多不解之谜。

我们寄希望于未来的数学家去解开这个谜。

托尼对做统计工作的爸爸斯坦·斯达特曼说:

“爸爸,请你给我和弟弟查理出几道趣题,好吗?

“当然好。

”爸爸说,“我很乐意接受你的提议。

于是,父子之间有关趣题的讨论便开始了。

1、“先说第一道。

”爸爸说,“有一位女士养了10只母狗,却没有1只母狗生了10只小狗。

必定至少有两只母狗生有同样多的小狗,是吗?

“未必。

”托尼答道。

“我认为必定是这样。

”查理持不同意见。

兄弟俩谁说的对?

为什么?

2、“在第一题中,”爸爸补充说,“如果10只母狗每只至少生有1只小狗,但最多不到10只小狗。

你俩想一想,答案又如何呢?

“必定至少有两只母狗生有同样多的小狗。

”托尼的回答很肯定。

“未必是这样。

”查理答道。

兄弟俩谁说的对?

为什么?

3、“有甲、乙两个人在喝茶。

”爸爸接着又出题了,“其中甲对乙说:

‘我敢跟你打赌,此时此刻我衣袋里的钱至少是你的两倍!

’乙听后很不服气,对甲说:

‘我也敢跟你打赌,此时此刻我衣袋里的钱刚好是你的两倍!

’”

“结果,”爸爸继续说,“这两个人要么就都赢了,要么就都输了。

你们能说出这两个人是都赢了还是都输了呢?

“能说出,显然都输了。

”托尼说。

“不能说出,也有可能都赢了。

”查理说。

兄弟俩谁说的对?

为什么?

4、“昨天,我去拜访了一位叫吉米的朋友,吉米的家有两个花园。

”爸爸的新题又开始了,“我数了一下其中一个花园里的花,刚好是50朵。

不过这些花只有两种颜色——红的和蓝的。

然后我观察到,不论我摘哪两朵花,其中必定有1朵是蓝的。

据此,你们能说出红花和蓝花各有多少吗?

”“不能说出,由于这道题所给的条件不够充分,因此无法解。

”托尼摇着头说。

“完全能说出,由于这道题所给的条件足够充分,因此可以解。

”查理点着头说。

兄弟俩谁说的对?

为什么?

5、“在吉米家的另一个花园里,种有红、黄、蓝3种花。

”爸爸眯缝着眼,一字一顿地微笑道,“我观察到,不论我摘哪3朵花,至少有1朵是蓝的;我还观察到,不论我摘哪3朵花,至少有1朵是红的。

据此就可以类推——不论我摘哪3朵花,至少有1朵是黄的吗?

“可以类推。

”托尼说。

“不能类推。

”查理说。

兄弟俩谁说的对?

为什么?

神奇的“缺8数”

“缺8数”——12345679,颇为神秘,故许多人在进行探索。

清一色

菲律宾前总统马科斯偏好的数字不是8,却是7。

于是有人对他说:

“总统先生,你不是挺喜欢7吗?

拿出你的计算器,我可以送你清一色的7。

”接着,这人就用“缺8数”乘以63,顿时,777777777映入了马科斯先生的眼帘。

“缺8数”实际上并非对7情有独钟,它是“一碗水端平”,对所有的数都“一视同仁”的:

你只要分别用9的倍数(9,18……直到81)去乘它,则111111111,222222222……直到999999999都会相继出现。

三位一体

“缺8数”引起研究者的浓厚兴趣,于是人们继续拿3的倍数与它相乘,发现乘积竟“三位一体”地重复出现。

例如:

12345679×12=148148148

12345679×15=185185185

12345679×57=703703703

轮流“休息”

当乘数不是3的倍数时,此时虽然没有“清一色”或“三位一体”现象,但仍可看到一种奇异性质:

乘积的各位数字均无雷同。

缺什么数存在着明确的规律,它们是按照“均匀分布”出现的。

另外,在乘积中缺3、缺6、缺9的情况肯定不存在。

让我们看一下乘数在区间[10—17]的情况,其中12和15因是3的倍数,予以排除。

12345679×10=123456790(缺8)

12345679×11=135802469(缺7)

12345679×13=160493827(缺5)

12345679×14=172839506(缺4)

12345679×16=197530864(缺2)

12345679×17=209876543(缺1)

乘数在[19—26]及其他区间(区间长度等于7)的情况与此完全类似。

乘积中缺什么数,就像工厂或商店中职工“轮休”,人人有份,但也不能多吃多占,真是太有趣了!

一以贯之

当乘数超过81时,乘积将至少是十位数,但上述的各种现象依然存在,真是“吾道一以贯之”。

随便看几个例子:

(1)乘数为9的倍数

12345679×243=2999999997,只要把乘积中最左边的一个数2加到最右边的7上,仍呈现“清一色”。

(2)乘数为3的倍数,但不是9的倍数

12345679×84=1037037036,只要把乘积中最左边的一个数1加到最右边的6上,又可看到“三位一体”现象。

(3)乘数为3K+1或3K+2型

12345679×98=1209876542,表面上看来,乘积中出现雷同的2,但据上所说,只要把乘积中最左边的数1加到最右边的2上去之后,所得数为209876543,是“缺1”数,而根据上面的“学说”可知,此时正好轮到1休息,结果与理论完全吻合。

走马灯

冬去春来,24个节气仍然是立春、雨水、惊蛰……其次序完全不变,表现为周期性的重复。

“缺8数”也有此种性质,但其乘数是相当奇异的。

实际上,当乘数为19时,其乘积将是234567901,像走马灯一样,原先居第二位的数2却成了开路先锋。

深入的研究显示,当乘数为一公差等于9的算术级数时,出现“走马灯”现象。

例如:

12345679×28=345679012

12345679×37=456790123

回文结对携手同行

“缺8数”的“精细结构”引起研究者的浓厚兴趣,人们偶然注意到:

12345679×4=49382716

12345679×5=61728395

前一式的积数颠倒过来读(自右到左),不正好就是后一式的积数?

(但有微小的差异,即5代以4,而根据“轮休学说”,这正是题中的应有之义。

) 这样的“回文结对,携手并进”现象,对13,14;22,23;31,32;40,41等各对乘数(每相邻两对乘数的对应公差均等于9)也应如此。

例如:

12345679×67=827160493

12345679×68=839506172

遗传因子

“缺8数”还能“生儿育女”,这些后裔秉承其“遗传因子”,完全承袭上面的这些特性,所以这个庞大家族的成员几乎都同其始祖12345679具有同样的本领。

例如50672839是“缺8数”与41的乘积,所以它是一个衍生物。

我们看到,506172839×3=1518518517。

如前所述,“三位一体”模式又来到我们面前。

追本穷源

“缺8数”实际上与循环小数是一根藤上的瓜,因为

1/81=0.012345679。

在0.012345679中,为什么别的数码都不缺,应有尽有,而唯独缺少8呢?

我们看到,1/81=1/9×1/9。

把1/9化成循环小数,其循环节只有一位,即1/9=0.1。

如果你不怕麻烦,当然也可把它看成是0.1111……直到无穷。

无穷多个1的自乘,能办得到吗?

不妨先从有限个1的平方来试试看。

很明显:

11的平方=121,111的平方=12321,……,直到111111111的平方=12345678987654321。

但现在是无穷个1相乘,长长的队伍看不到尽头,怎么办呢?

利用数学归纳法,不难证明,在所有的层次,8都被一一跳过。

循环小数与循环群、周期现象的研究正方兴未艾,它已引起许多人的浓厚兴趣与密切关注。

由于计算机科学的蓬勃发展,人们越来越不满足于泛泛的几条性质,而更着眼于探索其精微结构。

数趣

“数字是万物之本”,数字学家毕达哥拉斯的这句话常常被人引证。

甚至对于“什么是朋友”这样的问题,他也可用数字加以回答:

“朋友就是你的另一个我,其关系就如220和284。

友好数对

该数对的神秘在于:

所有该数的整除数之和(包括1,但不包括该数本身)等于另一个数。

220的整除数之和为1+2+4+5+10+11+20+22+44+55+110=284,284的整除数之和为1+2+4+71+142=220。

有1800年之久,人们只知道这一数对是“友好”数对。

直至1636年,业余数学家皮勒才成功地发现了第二数对:

17296和18416。

今天,数学家已发现了1200对这样的数对,其中最大的一对是111448537712和118853793424。

花瓣与小兔的数字之美

雷奥那多将阿拉伯数字引入欧洲,他自称费波南希。

他在观察小白兔的繁殖时发现了值得注意的数字规律:

1,1,2,3,5,8,13,21,34,55,89,144……其特点是前两个数字之和即为下一个数。

直至今天,这一特性仍受到人们的关注,因为费波南希数字常常令人吃惊地出现在自然界中。

比如:

许多花瓣的数字正是这样。

为什么13是个倒霉的数字

它的基本设想来自威廉姆·福利斯、一位柏林医生的理论,即:

人类发展史中的一切都可用一个简单公式“23X+28Y”来计算,X和Y是正或负的整数。

比如:

一年有365天,因为365=23×11+28×4;法国革命开始于23×23+28×45=1789年;人类细胞核中有46对染色体=23×2+28×0;《圣经》中动物数是23×18+28×9=666;而13是个倒霉的数字,因为13=23×3+28×(-2),——式中出现了负数。

正如美国数学家诺伯特·维纳尔所指出的“数字是真理的源泉”,“但数字更多的是将人们引入超现实的境地。

构建数学金字塔

用数字1、2、3……9能排出不少有趣的金字塔加法算式。

大家都知道,做加法时非得要求把每个加数的个位对齐不可,所以我们等式中的金字塔都只能从侧面来欣赏,但是这并不影响它的赏心悦目。

一、把1、2、3……9这9个数字按照由小到大的顺序从上往下循环排列,逐步增加数字的个数,直到全部数字都出现在同一行中。

这时又接着从大到小地往下排列各数,逐步减少数字,直到只剩下最后1个数字为止。

你就获得了第一座金字塔,这座金字塔的和竟是——1234567890!

你觉得惊奇吗?

换一下排列的方向,你又能获得第二座金字塔,两座金字塔的结果相同。

(图A)

二、让我们再来建造第二批金字塔。

这次只限于使用所有的奇数数字1、3、5、7、9。

我们依然由小到大从上往下

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试认证 > 公务员考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1