华为GSM网络优化工程师面试总结.docx

上传人:b****6 文档编号:5620102 上传时间:2022-12-29 格式:DOCX 页数:27 大小:144.17KB
下载 相关 举报
华为GSM网络优化工程师面试总结.docx_第1页
第1页 / 共27页
华为GSM网络优化工程师面试总结.docx_第2页
第2页 / 共27页
华为GSM网络优化工程师面试总结.docx_第3页
第3页 / 共27页
华为GSM网络优化工程师面试总结.docx_第4页
第4页 / 共27页
华为GSM网络优化工程师面试总结.docx_第5页
第5页 / 共27页
点击查看更多>>
下载资源
资源描述

华为GSM网络优化工程师面试总结.docx

《华为GSM网络优化工程师面试总结.docx》由会员分享,可在线阅读,更多相关《华为GSM网络优化工程师面试总结.docx(27页珍藏版)》请在冰豆网上搜索。

华为GSM网络优化工程师面试总结.docx

华为GSM网络优化工程师面试总结

GSM高级网络优化工程师面试总结

英语自我介绍

每个人准备一段自己的英文工作简历,并把它背下来。

LAC规划原则;

位置区的划分不能过大或过小

如果LAC覆盖范围过小则移动台发生位置更新的过程将增多从而增加了系统中的信令流量反之位置区覆盖范围过大则网络寻呼移动台的同一寻呼消息会在许多小区中发送会导致PCH信道负荷过重同时增加Abis接口上的信令流量。

一般建议每个位置区内的TRX数目在300左右。

尽量利用移动用户的地理分布和行为进行LAC区域划分达到在位置区边缘位置更新较少的目的

如城市和郊县用不同的LAC,避免位置区边界设置在用户密集区域。

如果M1800与M900共用一个MSC,只要系统容量允许建议使用相同的位置区。

如果由于寻呼容量的限制必须划分为两个以上的位置区这时候就有两种设计思路按地理位置划分和按频段划分。

频点规划原则

1、同基站内不允许存在同频频点;

2、同一小区内BCCH和TCH的频率间隔最好在400K以上;没有采用跳频时,同一

小区的TCH间的频率间隔最好在400K以上;

3、非1*3复用方式下,直接相邻的基站避免同频;(即使其天线主瓣方向不同,旁瓣及背瓣的影响也会因天线及环境的原因而难以预测)

4、考虑到天线挂高和传播环境的复杂性,距离较近的基站应尽量避免同频相对(含斜对);

5、通常情况下,1*3复用应保证跳频频点是参与跳频载频数的二倍以上;

6、重点关注同频复用,避免邻近区域存在同BCCH同BSIC;

掉话率如何优化

无线系统掉话分为SDCCH掉话和TCH掉话:

无线链路断掉话

调整无线链路失效计数器,SACCH复桢数,T3109定时器,MS最小接收信号等级,RACH最小接入电平进行优化。

错误指示掉话

调整T200定时器相关参数进行优化

干扰掉话

下行干扰可以通过更换合理的频点和BSIC,打开下行DTX,跳频进行优化。

上行干扰可以打开上行功控进行优化。

切换掉话

通过完善小区相邻关系,优化切换门限,切换时间,切换定时器,调整越区覆盖的小区工程参数等参数来优化。

上下行不平衡掉话

检查两副的天线下仰角是否不同,方位角是否合理;通过调整下倾角控制过远覆盖掉话;检查天馈是否进水,合路器是否存在问题。

A口或Abis口掉话

通过检查MSC和传输是否存在问题来优化。

信道问题掉话

对载频板硬件进行版本升级或更换。

寻呼成功率如何优化

寻呼设计到电路和分组域寻呼。

1、需要MSC侧的寻呼方式(开启2次寻呼)、寻呼次数(MSC设置为:

4次,BTS:

1-8次,目前设置为4次)、寻呼时间间隔设置合理。

2、需要MSC侧和BSC侧与寻呼相关的参数设置合理。

例如:

MSC和BSC位置更新周期时间T3212,一般MSC周期性位置更新周期偏大、MSC和BSC寻呼定时器设置、MSC和BSC对于CGI数据配置正确。

3、信令拥塞会影响寻呼成功率。

例如:

A口信令链路拥塞、PCH拥塞、SDCCH拥塞都会导致寻呼成功率下降。

4、位置区划分的合理性、基站覆盖情况、上下行不平衡处理。

5、网优参数调整优化:

降低RACH最小接入电平参数调整;增加MS最大重发次数(1、2、4、7);对于华为BTS312型基站,可以打开寻呼重发功能;“寻呼次数”(1-8)由1次改为4次;打开寻呼寻呼协作开关(BSC级:

A口寻呼协作,小区级:

BSS寻呼协作)

造成掉话的原因有哪些

无线系统掉话分为SDCCH掉话和TCH掉话,其主要产生原因综述如下:

(1)由于干扰而导致的掉话

(2)由于切换而导致的掉话

  1)在基站做分担话务量的切换时,一些切换请求会因为切入小区的信号强度太弱而失败,即使切换成功也经常会因为信号强度太弱而掉话。

原因是在BSC中我们对手机用户的接收信号强度设有最低门限(RX_LEV_ACC_MIN=-105dBm),当低于此门限值时,手机无法建立呼叫。

  2)有一些小区由于相邻小区都很繁忙,造成忙时目标基站无切换信道或在拓扑关系中漏定义切换条件(含BSC间切换和越局切换),致使手机用户在进行切换时无法占用相邻小区的空闲话音信道,此时BSC将对此进行呼叫重建(DirectRetry),若主叫基站的信号此时不能满足最低工作门限或亦无空闲话音信道,则呼叫重建失败导致掉话。

当小区之间存在着漏覆盖或者盲区时也会导致切换失败而掉话。

  3)小岛效应。

如果服务小区A由于地形的原因产生的场强覆盖小岛C,而在小岛1C周围又为小区B的覆盖范围,如在A的邻近小区的拓扑结构表中未添加小区B,那么当用户在C中建立呼叫后一走出小岛C,由于无处可切换将产生掉话。

(3)由于天馈线原因而导致的掉话

  1)由于两副天线下仰角不同而产生的掉话

  RBS200基站或RBS2000采用A型CDU时每个定向小区均有两副收发双向天线,该小区的BCCH和SDCCH有可能分别从两副不同的天线发出。

当两副天线的俯仰角不同时,就会造成两副天线的覆盖范围不同,当用户刚好在能接收BCCH信号却接收不到TCH信号的区域时,这时用户能收到服务信号(即BCCH信号),但在振铃后通话时掉话。

即用户在产生呼叫时却因无法占用SDCCH信道或无法分配TCH信道而掉话。

  2)由于天馈线方位角原因而产生的掉话

  RBS200基站或RBS2000采用A型CDU时每个定向小区均有两副收发双向天线,当两副天线的方位角不同时就会形成不同覆盖范围。

和第一点同理,用户在产生呼叫时却因无法占用SDCCH信道或无法分配TCH信道而掉话。

3)由于天馈线自身原因而产生的掉话。

  天馈线损伤、进水、打折和接头处接触不良,均会导致驻波比大,降低发射功率或收信灵敏度,从而产生严重的掉话。

另外,如果CDU有故障或CDU射频连接线接触不良,也同样会造成掉话。

  4)分集接收失败而产生的掉话。

  两副天线之间水平距离不合理(正常在4m左右)、两副天线方向角不一致、CDU有故障或CDU射频连接线接触不良或天线交叉接错,均会降低收信灵敏度产生掉话。

(4)Abis接口失败产生的掉话

  Abis接口的,包括BSC未收到来自BTS的测量报告,超过TA极限,切换过程的一些信令失败以及一些内部原因,此外还有Abis接口的误码率的影响。

(5)A接口失败产生的掉话

  A接口失败出现的较少,主要是切换(BSC之间或MSC之间的切换)的失败,原因是切换局数据不全或目的基站不具备切入条件。

(6)基站软硬件故障而产生的掉话

  系统的硬件故障或软件不完善,程序或数据差错等原因都会造成掉话。

(7)由于采用直放站而导致的掉话

  为减少投资,扩大覆盖范围,一些县城内的小基站普遍采用直放站直接放大其信号。

由于直放站有选频或全频带放大两种,其选频不合理会引起同频或邻频干扰,或者功率太大而造成对附近站的干扰,从而造成掉话。

(8)TA和实际不符

  由于某种原因,当BSC计算出的时间提前量(TA)与实际所需要的TA不相符时,会造成时隙上干扰,干扰严重时会引起掉话。

切换分哪几种

根据不同的切换判决触发条件分:

1、紧急切换-TA过大紧急切换

质量差紧急切换

快速电平下降紧急切换

干扰切换

2、负荷切换

3、正常切换-边缘切换

分层分级切换

PBGT切换

4、速度敏感性切换(快速移动切换)

5、同心圆切换

切换执行的顺序

又可以分为同步切换、异步切换

搬迁前评估要收集哪些信息

1.原有网络基本信息:

网络拓扑、话音业务:

忙时用户每户话务量、短信:

忙时发(收)短消息数/用户。

2.原有网络设备基本信息:

原网设备支持的协议版本;MSC、BSC、BTS的型号和软件版本;厂家、基站数量、载频数量(半速率、EDGE)、覆盖区域、从属MSC;基站型号、传输模式、E1数量、从属BSC(MSC);基站型号、载频配置、合路器类型、合路方式、合路损耗、机顶功率、避雷器、滤波器;塔放种类、频段、塔放增益、工作电压、工作电流、供电方式;对7/8、5/4、13/8三种直径馈线的使用规则、馈线长度;室内分布系统的覆盖方式及馈线布置原则;直放站的类型、站址、施主基站、发射功率、频点设置、天线配置;站址、载频配置、传输模式、天线配置。

3.原有网络网规数据:

工程参数;无线参数;话统数据,KPI公式;网络规划原则;信道配置情况;MSC相关信息(网络侧位置更新时间、位置更新成功率及寻呼成功率、MSC间切换成功率、MSC侧关于支持半速率和全速率之间切换的控制参数;语音版本、加密算法;T305、T308)。

4.原有核心网KPI:

检查本局VLR用户总数比率、智能用户数比率、各局向接通率情况、CPU占用率、每线话务量、局向话务量、每链路信令负荷、短消息收发成功率、平均接续时长、BHCA

5.网络异常信息和客户投诉:

6.客户的工程和维护能力:

根据客户的实施能力安排工程实施计划

单站开通后,网优侧要做哪些工作

检查基站告警。

查看小区占用情况及干扰带分布。

检查基站开通后的话统指标。

检查小区参数设置。

检查基站开通后的用户感受和投诉情况。

对开通后站点进行DT和CQT,单站验证接收电平,质量,切换等DT和CQT指标。

对指标有问题的基站进行工程参数和网优参数的适当调整,同时复测验证。

信号波动有哪些原因

1、无线信道的传播特性引起,即多径效应,这样就会产生多径衰落或快衰落。

由于无线信道的这种传播特性,使得在接收端收到的信号场强就产生了波动。

2、小区重叠覆盖区引起的小区重选或切换。

此时若一些相关的小区参数设置的不当——如小区选择参数、切换参数等,当这些参数设置的使手机很容易进行小区重选或切换时,手机就会在两个信号大小交替变化的频点上不断进行重选或切换,这是容易造成接收信号的波动其中一个原因。

3、外界存在干扰。

4、如果设备性能不够稳定,也可能会对信号波动带来一些影响。

例如TRX输出功率本身就存在波动,下行功控、DTX(不连续发射)功能的开启也会对信号的波动带来一些影响。

5、硬件/传输故障。

错误指示掉话要改哪些参数

TCH掉话:

T200SACCHTCHSAPI0(10ms):

1-255,一般设为150

T200SACCHTCHSAPI3(10ms):

1-255,一般设为200

N200SACCH从5改到10,15,20。

SDCCH掉话:

T200SDCCH:

1-255,缺省为60,一般设为150

T200SACCHSDCCH:

1-255,缺省为60,一般设为150

T200SDCCHSAPI3:

1-255,缺省为60,一般设为180

SAPI0定义为主信令;SAPI3定义为短消息。

干扰切换和质量差切换的区别

“BQ切换”即“质量差切换”在上下行的服务小区的链路质量在滤波器长度时间内平均值大于等于紧急切换链路质量限制时触发

干扰切换在当上下行接收电平大于干扰切换链路接收功率门限,但传输质量又低于干扰切换质量限制时触发。

基带跳频和射频跳频的区别

1)使用下行DTX和下行功率控制的限制

此时如果采用基带跳频将导致通话质量的恶化,严重时会导致某些品牌的MS掉话。

而使用射频跳频则不会出现这种情况,射频跳频是唯一的选择。

2)参数设置

若采用射频跳频,可采用十分简单的频率复用技术,如1:

1模型或1:

3模型等。

在这种情况下,就是增加基站也不需重新进行新的频率规划。

若采用基带跳频,则每个小区应有两个跳频频率分配表(其中一个含有BCCH频点)。

3)TRX损坏对容量及质量的影响

若采用射频跳频,当TRX损坏时,该小区的容量虽然会降低,但话音质量却会提高。

这是因为每个TRX采用的跳频组都是相同的,当其中的一个坏掉时,会降低对其它TRX的干扰。

若采用基带跳频,因为可用频点数目等于TRX的数目,所以如果TRX损坏的话,不但该小区的容量会降低,而且参与跳频的频点也会随之减少,该小区的性能也会受到影响(如话音质量)。

怎样判断是网内干扰还是网外干扰,网外干扰如何定位和排除

网内干扰主要来自于同频和邻频干扰,可以通过DT和CQT发现的干扰;相反则为网外干扰,如电视台、大功率电台、微波、雷达、高压电力线,模拟基站等。

网外干扰的定位和排除:

通过扫频仪测试定位和排除,话务量不高,干扰不规律,时有时现的。

 

双频网(900/1800)之间的切换属于什么切换,有哪些相关参数

属于层间切换,小区所在层;小区优先级;层间切换门限;层间切换磁滞

天线的分类和选型的原则,电器指标,高速公路选择天线类型

天线的分类:

按波束宽度

60、90、120、全向。

按频段

900,1800,双频天线。

按极化方式

单极化、双极化。

天线选型原则:

市区基站天线选择

为了能更好地控制小区的覆盖范围、抑制干扰,市区一般不选用水平半功率角≥90°的定向天线和全向天线;由于市区基站一般对覆盖范围要求不大,因此建议选用中等增益的天线。

同时天线的体积和重量可以变小,有利于安装和降低成本;由于市区基站对覆盖范围的控制很严格,下倾角一般很大,选择电下倾天线可以增大下倾角调整范围,同时有利于干扰控制;由于市区基站站址选择困难,天线安装空间受限,建议选用双极化天线。

郊区基站天线选择

郊区的应用环境介于市区环境与农村环境之间,因此可根据实际情况分别参考市区与农村天线选择的建议;考虑到将来的平滑升级,一般不建议采用全向站型;郊区基站天线即使采用下倾角,一般下倾角也比较小;郊区基站采用垂直极化和双极化天线的效果差不多,因此选择时主要从天线安装环境和成本等方面考虑。

天线电器指标:

●极化方式

●半功率角

●下倾角

●前后向比

●增益

●驻波比

基站勘测的内容;

1、方位角、覆盖区域、周边无线环境。

CQT测试选址原则;

热点话务区。

重要客户区(移动老总家),政府机关。

无线环境具有代表性地点。

切换成功率很低最可能原因;

小区拥塞造成无法入切换。

硬件故障。

切换时频点干扰。

基站时钟无法同步或异常。

切换参数设置不合理。

BSC侧的相邻关系未做或做错,或对侧BSC也没做对应相邻关系或做错,包括孤岛效应。

MSC侧的对应小区切换路由不通。

寻呼成功率相关参数

RACH最小接入电平

寻呼次数

MS最大重发次数

随机接入错误门限

BSS寻呼协作

A口寻呼开关是否

T200含义

T200定时器是防止数据链路层数据发送过程死锁的定时器,数据链路层的作用就是将容易出差错的物理链路改造成顺序的无差错的数据链路。

通过调整T200定时器可以适当减少错误指示掉话

怎样检查上行干扰;

1检查话统里干扰带分布;检查基站维护的干扰带等级。

16bit排序

服务小区与邻小区都有各自的排序结果,值越小,优先级越高,排队越靠前。

第1-3位:

按照小区电平的排序。

第4位:

同层小区间切换磁滞比较位

第5-10位:

切换层级位。

第11位:

负荷调整位

第12、13位:

共BSC/MSC调整位

第14位:

层间切换门限调整位

第15位:

小区类型调整位

第16位:

保留位

上下行不平衡怎么看出来,有哪些原因;

看等级九、十、十一的比例和等级一、二、三的比例。

前者过大为上行弱,后者过大为下行弱。

乒乓切换怎样导致掉话

一旦发生切换不及时,或着电平波动,就很容易切换掉话。

下行覆盖差怎么解决

提高载频功率等级

更换大功率载频板

使用损耗低的合路器

加高站址

换高增益天馈

调整方位角和下倾角正打覆盖。

调整无线链路失效计数器和T3109优化下行覆盖

驻波比理想情况下是多少

1.5或1.0以下

射频跳频概念,跳频增益,什么情况下跳频增益最大,跳频好处,跳频增益最大多少;

跳频有两个作用,频率分集作用和干扰分集作用。

跳频的频率分集增益由传播环境,MS速度和跳频序列的频率数目及频率间的相关性决定,其最大值不超过6dB。

当MS速度很快时,跳频不起频率分集作用;一般来讲,移动通信的电磁波由直达波分量和散射波分量组成,当直达波成分占主要地位时,跳频的频率分集作用不明显,其增益大约在0~3dB,反之,散射波分量占主要地位时,增益显著,大约在3~6dB左右;对于一个传播环境、MS速度及频率间隔均满足使跳频频率分集增益最大的典型环境,三个频率跳频最大可达3.3dB,四个频率跳频最大可达6dB,9个频率跳频其频率分集增益不超过5.5dB,最大的频率分集增益不超过6dB。

跳频的干扰分集能力与干扰的分布形式、跳频序列的频率数目及其频率间的相关性有关。

一般来讲,对于窄带干扰,干扰分集作用明显,对于宽带干扰则不起明显作用;经过测试,当干扰呈窄带分布时,跳频频率数目为3、5、7时对受干扰频点的干扰分集增益分别为3.2dB、4.6dB、5.5dB。

由于干扰分集作用主要表现在对干扰的平均上,因此,对于单个频点的干扰分集增益没有上MBR的默认值为0,在系统消息类型2ter和5ter中发送。

上下行不平衡的概念;

下行接收电平-上行接收电平不等于6dB

T3103a,T3103b,T3103c计数器的意义;

T3103a定时器为源小区的切换定时器

T3103b定时器为目标小区的两个切换定时器

T3103c定时器为小区内切换等待切换完成定时器

共MSC/BSC调整在16bit优选级中的位置

第12、13位

呼叫建立流程;

切换流程;

同步切换和异步切换区别;

同一基站的不同小区间的切换是同步切换;不同基站的小区间的切换是异步切换。

异步切换会下分物理信息,同步切换没有。

搬迁后网络覆盖下降,有哪些原因?

设备功率

天馈老化

合路损耗过大

参数原因

T3212作用?

何时重新计时?

位置更新定时器,用于手机寻呼,当新小区的T3212和源小区的T3212不等时,会导致T3212超时后重新计时。

影响覆盖的参数有哪些?

如何调整这些参数?

无线链路失效计数器

SACCH复桢数

T3109定时器

MS最小接收信号等级

RACH最小接入电平

载频功率等级

紧急切换TA限制

基站时钟有几种状态?

内时钟、外时钟、外同步时钟

排除干扰有哪些方法?

更换频点,BSIC。

合理规划相邻关系。

下行DTX。

跳频。

同心圆。

打开功控。

路测时上/下行干扰如何判断?

手机接收电平很好,但手机一直以满功率发射,可以判断为存在上行干扰。

手机接收电平很好,但手机误码率较高,可以断定为存在下行干扰。

覆盖保障措施有哪些?

搬迁前做好机顶功率的测量和对比,配给的载频板功率情况,

网优覆盖参数按照搬迁前的经验值设。

搬迁前后合路器的损耗对比

加了塔放后,数据配置需要做什么操作?

天馈配置表里有无塔放、功率衰减因子的设置。

功率衰减因子=塔放增益-馈线损耗=12-4=8

三工塔放增益12dB、

双工塔放增益14dB、

单工塔放增益14dB、

假定馈线损耗为4dB

小区重选的触发条件?

1)当前驻留小区的无线路径损耗太大(C1<=0);

2)当前驻留小区的下行链路故障(DSC<=0);

3)当前驻留小区被禁止了;

4)根据小区重选参数C2,在同一个位置区有一个比当前驻留小区更好的小区,或运用小区重选滞后参数CRH,在选中的网络里的另一位置区中有一更好小区。

5)随机接入次数达到BCCH上广播的最大重试次数,仍然没能成功接入当前驻留小区。

华为PBGT切换算法的公式是

PBGT(n)=(Min(MS_TXPWR_MAX,P)-RXLEV_DL-PWR_C_D)

-(Min(MS_TXPWR_MAX(n),P)-RXLEV_NCELL(n))

其中各个参数含义如下:

MS_TXPWR_MAX:

服务小区允许的MS最大发射功率;

MS_TXPWR_MAX(n):

邻近小区n允许的MS最大发射功率;

RXLEV_DL:

MS对服务小区的接收功率;

RXLEV_NCELL(n):

MS对邻近小区n的接收功率;

PWR_C_D:

由于功率控制引起的服务小区最大下行发射功率与服务小区实际下行发射功率的差值;

P:

MS最大发射功率能力。

影响搬迁前后基站话务量下降的主要原因有:

1、搬迁前后基站机顶功率较搬迁前有所下降;

2、搬迁后天馈性能下降;

3、参数设置不合理(如:

MS最小接收信号等级或RACH最小接入电平设置较大);

4、用户数量变化;

5、不同厂家BSC侧话务量统计方式有差异。

华为按照测量报告上报个数进行统计,部分友商按照TCH占用时长进行统计。

因此,当出现严重干扰或覆盖电平很低时,基站接收不到MS上报的测量报告(MeasurementResult),华为不统计此部分话务量,但由于BSS侧的定时器(如SACCH复帧数、T200系列定时器)尚未超时,基站仍旧保持着底层链路资源,其他厂家将该部分时间统计为话务量。

(注:

BSC侧话务量统计方式的不同,不影响交换侧计费)

写出话务统计中切换统计的几种

小区内切换,BSC内小区间切换,跨MSC的出入BSC间的切换

小区切换算法有哪些?

M准则,K准则,16bit排位

T3109有什么作用?

与无线链路失效计数器,共同控制上行无线链路的断超时。

T3109=a+RadioLinkTimeout×0.48s,a=1或2s

华为常用的合路器及典型损耗值?

EDU1dB

CDU4.5dB

SCU6.8dB

SCU+CDU8dB

双CDU(不合路)1dB

双CDU(合路)4.5dB

下倾角与覆盖距离的关系?

机械下倾调整的极限值?

机械下倾调整好大是12度吧

GPRS中,CS1~CS4的编码方式?

含有RLC数据块的RLC/MAC块可以使用信道编码方案CS-1、CS-2、CS-3和CS-4来进行编码,采用CS-1编码的RLC/MAC块不包含保留部分。

GPRS四种信道编码方案下RLC数据块大小如下表所示。

信道编码方案(ChannelCodingScheme)

RLC数据块大小[RLCdatablocksizewithoutsparebits(N2)(octets)]

剩余比特(Numberofsparebits)

RLC数据块大小(含剩余比特)RLCdatablocksize(octets)

CS-1

22

0

22

CS-2

32

7

327/8

CS-3

38

3

383/8

CS-4

52

7

527/8

在载干比较高的地区,建议将缺省编码方式设置为CS-2;在载干较差的地区,建议将缺省编码方式设置CS-1。

掉话原因分析思路?

移动公司最坏小区定义?

分子:

掉话大于3%,或拥塞大于5%,且每信道话务量间于0.1-0.6的小区总数。

分母:

每信道话务量大于0.1的小区总数。

同心圆切换算法

当不选择“增强型同心圆功能允许”时,由接收质量门限、接收电平门限、接收电平磁滞、TA门限、TA磁滞共同决定内外圆区域;

当选择“增强型同心圆功能允许”时,由接收质量门限、外圆向内圆切换接收电平门限、内圆向外圆切换接收电平门限、TA门限、TA磁滞共同决定内外圆区域。

以上五个参数决定普通同心圆功能的内外圆覆盖范围。

内圆的区域可以表示为:

接收电平>=接收电平门限+接收电平磁滞并且TA

外圆的区域可以表示为:

接收电平<接收电平门限-接收电

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿教育 > 少儿英语

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1