新人教版初中数学九年级下册锐角三角函数第12课时同步练习2及答案精品试题.docx
《新人教版初中数学九年级下册锐角三角函数第12课时同步练习2及答案精品试题.docx》由会员分享,可在线阅读,更多相关《新人教版初中数学九年级下册锐角三角函数第12课时同步练习2及答案精品试题.docx(9页珍藏版)》请在冰豆网上搜索。
新人教版初中数学九年级下册锐角三角函数第12课时同步练习2及答案精品试题
28.1锐角三角函数——正弦、余弦、正切
一、基础·巩固达标
1.在Rt△ABC中,如果各边长度都扩大2倍,则锐角A的正弦值和余弦值()
A.都没有变化B.都扩大2倍C.都缩小2倍D.不能确定
2.已知α是锐角,且cosα=,则sinα=()
A.B.C.D.
3.Rt△ABC中,∠C=90°,AC∶BC=1∶,则cosA=_______,tanA=_________.
4.设α、β为锐角,若sinα=,则α=________;若tanβ=,则β=_________.
5.用计算器计算:
sin51°30′+cos49°50′-tan46°10′的值是_________.
6.△ABC中,∠BAC=90°,AD是高,BD=9,tanB=,求AD、AC、BC.
二、综合•应用达标
7.已知α是锐角,且sinα=,则cos(90°-α)=()
A.B.C.D.
8.若α为锐角,tana=3,求的值.
9.已知方程x2-5x·sinα+1=0的一个根为,且α为锐角,求tanα.
10.四边形是不稳定的.如图28.1-14,一矩形的木架变形为平行四边形,当其面积变为原矩形的一半时,你能求出∠α的值吗?
图28.1-14
三、回顾•展望达标
11.三角形在正方形网格纸中的位置如图28.3-15所示,则sinα的值是()
A.B.C.D.
图28.1-15图28.1-17图28.1-16
12.如图28.1-17,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径,AC=2,则cosB的值是()
A.B.C.D.
13.在△ABC中,∠C=90°,AB=15,sinA=,则BC=()
A.45B.5C.D.
14.如图28.3-16,CD是Rt△ABC斜边上的高,AC=4,BC=3,则cos∠BCD=()
A.B.C.D.
15.课本中,是这样引入“锐角三角函数”的:
如图28.1-18,在锐角α的终边OB上,任意取两点P和P1,分别过点P和P1做始边OA的垂线PM和P1M1,M和M1为垂足.我们规定,比值________叫做角α的正弦,比值________叫做角α的余弦.这是因为,由相似三角形的性质,可推得关于这些比值得两个等式:
________,________.说明这些比值都是由________唯一确定的,而与P点在角的终边上的位置无关,所以,这些比值都是自变量α的函数.
图28.1-18图28.1-19
16.计算:
2-1-tan60°+(-1)0+;
17.已知:
如图28.1-19,△ABC内接于⊙O,点D在OC的延长线上,sinB=,∠CAD=30°.
(1)求证:
AD是⊙O的切线;
(2)若OD⊥AB,BC=5,求AD的长.
参考答案
一、基础·巩固达标
1.在Rt△ABC中,如果各边长度都扩大2倍,则锐角A的正弦值和余弦值()
A.都没有变化B.都扩大2倍C.都缩小2倍D.不能确定
思路解析:
当Rt△ABC的各边长度都扩大二倍,所得新三角形与原三角形相似,故锐角A大小不变.
答案:
A
2.已知α是锐角,且cosα=,则sinα=()
A.B.C.D.
思路解析:
由cosα=,可以设α的邻边为4k,斜边为5k,根据勾股定理,α的对边为3k,则sinα=.
答案:
C
3.Rt△ABC中,∠C=90°,AC∶BC=1∶,则cosA=_______,tanA=_________.
思路解析:
画出图形,设AC=x,则BC=,由勾股定理求出AB=2x,再根据三角函数的定义计算.
答案:
,
4.设α、β为锐角,若sinα=,则α=________;若tanβ=,则β=_________.
思路解析:
要熟记特殊角的三角函数值.
答案:
60°,30°
5.用计算器计算:
sin51°30′+cos49°50′-tan46°10′的值是_________.
思路解析:
用计算器算三角函数的方法和操作步骤.
答案:
0.3860
6.△ABC中,∠BAC=90°,AD是高,BD=9,tanB=,求AD、AC、BC.
思路解析:
由条件可知△ABC、△ABD、△ADC是相似的直角三角形,∠B=∠CAD,于是有tan∠CAD=tanB=,所以可以在△ABD、△ADC中反复地运用三角函数的定义和勾股定理来求解.
解:
根据题意,设AD=4k,BD=3k,则AB=5k.
在Rt△ABC中,∵tanB=,∴AC=AB=k.∵BD=9,∴k=3.
所以AD=4×3=12,AC=×3=20.
根据勾股定理.
二、综合•应用达标
7.已知α是锐角,且sinα=,则cos(90°-α)=()
A.B.C.D.
思路解析:
方法1.运用三角函数的定义,把α作为直角三角形的一个锐角看待,从而对边、邻边、斜边之比为4∶3∶5,(90°-α)是三角形中的另一个锐角,邻边与斜边之比为4∶5,cos(90°-α)=.
方法2.利用三角函数中互余角关系“sinα=cos(90°-α)”.
答案:
A
8.若α为锐角,tana=3,求的值.
思路解析:
方法1.运用正切函数的定义,把α作为直角三角形的一个锐角看待,从而直角三角形三边之比为3∶1∶,sinα=,cosα=,分别代入所求式子中.
方法2.利用tanα=计算,因为cosα≠0,分子、分母同除以cosα,化简计算.
答案:
原式=.
9.已知方程x2-5x·sinα+1=0的一个根为,且α为锐角,求tanα.
思路解析:
由根与系数的关系可先求出方程的另一个根是,进而可求出sinα=,然后利用前面介绍过的方法求tanα.
解:
设方程的另一个根为x2,则()x2=1
∴x2=
∴5sinα=()+(),解得sinα=.
设锐角α所在的直角三角形的对边为4k,则斜边为5k,邻边为3k,
∴tanα=.
10.四边形是不稳定的.如图28.1-14,一矩形的木架变形为平行四边形,当其面积变为原矩形的一半时,你能求出∠α的值吗?
图28.1-14
思路解析:
面积的改变实际上是平行四边形的高在改变,结合图形,可以知道h=,再在高所在的直角三角形中由三角函数求出α的度数.
解:
设原矩形边长分别为a,b,则面积为ab,
由题意得,平行四边形的面积S=ab.
又因为S=ah=a(bsinα),所以ab=absinα,即sinα=.所以α=30°.
三、回顾•展望达标
11.三角形在正方形网格纸中的位置如图28.3-15所示,则sinα的值是()
图28.1-15
A.B.C.D.
思路解析:
观察格点中的直角三角形,用三角函数的定义.
答案:
C
12.如图28.1-17,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径,AC=2,则cosB的值是()
图28.1-17
A.B.C.D.
思路解析:
利用∠BCD=∠A计算.
答案:
D
13.在△ABC中,∠C=90°,AB=15,sinA=,则BC=()
A.45B.5C.D.
思路解析:
根据定义sinA=,BC=AB·sinA.
答案:
B
14.如图28.3-16,CD是Rt△ABC斜边上的高,AC=4,BC=3,则cos∠BCD=()
图28.1-16
A.B.C.D.
思路解析:
直径所对的圆周角是直角,设法把∠B转移到Rt△ADC中,由“同圆或等圆中,同弧或等弧所对的圆周角相等”,得到∠ADC=∠B.
答案:
B
15.课本中,是这样引入“锐角三角函数”的:
如图28.1-18,在锐角α的终边OB上,任意取两点P和P1,分别过点P和P1做始边OA的垂线PM和P1M1,M和M1为垂足.我们规定,比值________叫做角α的正弦,比值________叫做角α的余弦.这是因为,由相似三角形的性质,可推得关于这些比值得两个等式:
________,________.说明这些比值都是由________唯一确定的,而与P点在角的终边上的位置无关,所以,这些比值都是自变量α的函数.
图28.1-18
思路解析:
正弦、余弦函数的定义.
答案:
,锐角α
16.计算:
2-1-tan60°+(-1)0+;
思路解析:
特殊角的三角函数,零指数次幂的意义,负指数次幂的意义.
解:
2-1-tan60°+(-1)0+||=-+1+=.
17.已知:
如图28.1-19,△ABC内接于⊙O,点D在OC的延长线上,sinB=,∠CAD=30°.
图28.1-19
(1)求证:
AD是⊙O的切线;
(2)若OD⊥AB,BC=5,求AD的长.
思路解析:
圆的切线问题跟过切点的半径有关,连接OA,证∠OAD=90°.
由sinB=可以得到∠B=30°,由此得到圆心角∠AOD=60°,从而得到△ACO是等边三角形,由此∠OAD=90°.
AD是Rt△OAD的边,有三角函数可以求出其长度.
(1)证明:
如图,连接OA.
∵sinB=,∴∠B=30°.∴∠AOD=60°.
∵OA=OC,∴△ACO是等边三角形.
∴∠OAD=60°.
∴∠OAD=90°.∴AD是⊙O的切线.
(2)解:
∵OD⊥AB∴OC垂直平分AB.
∴AC=BC=5.∴OA=5.
在Rt△OAD中,由正切定义,有tan∠AOD=.
∴AD=.