硬件电路设计基础知识.docx

上传人:b****4 文档编号:5481721 上传时间:2022-12-16 格式:DOCX 页数:93 大小:534.56KB
下载 相关 举报
硬件电路设计基础知识.docx_第1页
第1页 / 共93页
硬件电路设计基础知识.docx_第2页
第2页 / 共93页
硬件电路设计基础知识.docx_第3页
第3页 / 共93页
硬件电路设计基础知识.docx_第4页
第4页 / 共93页
硬件电路设计基础知识.docx_第5页
第5页 / 共93页
点击查看更多>>
下载资源
资源描述

硬件电路设计基础知识.docx

《硬件电路设计基础知识.docx》由会员分享,可在线阅读,更多相关《硬件电路设计基础知识.docx(93页珍藏版)》请在冰豆网上搜索。

硬件电路设计基础知识.docx

硬件电路设计基础知识

硬件电子电路基础

关于本课程

第一章半导体器件

§1-1半导体基础知识

§1-2PN结

§1-3二极管

§1-4晶体三极管

§1-5场效应管

第二章基本放大电路

§2-1晶体三极管基本放大电路

§2-2反馈放大器的基本概念

§2-3频率特性的分析法

§2-4小信号选频放大电路

§2-5 场效应管放大电路

第三章模拟集成电路

§3-1恒流源电路

§3-2差动放大电路

§3-3集成运算放大电路

§3-4集成运放的应用

§3-5  限幅器(二极管接于运放输入电路中的限幅器)

§3-6   模拟乘法器

第四章功率放大电路

§4-1功率放大电路的主要特点

§4-2 乙类功率放大电路

§4-3 丙类功率放大电路

§4-4 丙类谐振倍频电路

第五章 正弦波振荡器

§5-1 反馈型正弦波振荡器的工作原理

§5-2LC正弦波振荡电路

§5-3LC振荡器的频率稳定度

§5-4石英晶体振荡器

§5-5RC正弦波振荡器

第六章 线性频率变换 ──振幅调制、检波、变频

§6-1 调幅波的基本特性

§6-2 调幅电路

§6-3 检波电路

§6-4 变频

第七章  非线性频率变换──角度调制与解调

       §7-1概述

       §7-2调角信号分析

       §7-3调频及调相信号的产生

       §7-4频率解调的基本原理和方法

第八章 反馈控制电路

§8-1自动增益控制(AGC)

§8-2自动频率控制(AFC)

§8-3自动相位控制(APC)PLL

第一章半导体器件

§1-1半导体基础知识

§1-2PN结

§1-3二极管

§1-4晶体三极管

§1-5场效应管

§1-1半导体基础知识

一、什么是半导体

  半导体就是导电能力介于导体和绝缘体之间的物质。

(导电能力即电导率)

 (如:

硅Si锗Ge等+4价元素以及化合物)

二、半导体的导电特性

  本征半导体――纯净、晶体结构完整的半导体称为本征半导体。

  硅和锗的共价键结构。

(略)

1、 半导体的导电率会在外界因素作用下发生变化

∙掺杂──管子

∙温度──热敏元件

∙光照──光敏元件等

2、 半导体中的两种载流子──自由电子和空穴

∙自由电子──受束缚的电子          (-)

∙空穴   ──电子跳走以后留下的坑  (+)

三、杂质半导体──N型、P型

 (前讲)掺杂可以显著地改变半导体的导电特性,从而制造出杂质半导体。

∙N型半导体(自由电子多)

  掺杂为+5价元素。

如:

磷;砷P──+5价使自由电子大大增加

  原理:

Si──+4价P与Si形成共价键后多余了一个电子。

载流子组成:

o本征激发的空穴和自由电子──数量少。

o掺杂后由P提供的自由电子──数量多。

o空   穴──少子

o自由电子──多子

∙P型半导体    (空穴多)

掺杂为+3价元素。

如:

硼;铝使空穴大大增加

  原理:

Si──+4价B与Si形成共价键后多余了一个空穴。

B──+3价

  载流子组成:

o本征激发的空穴和自由电子──数量少。

o掺杂后由B提供的空   穴──数量多。

o空   穴──多子

o自由电子──少子

结论:

N型半导体中的多数载流子为自由电子;

P型半导体中的多数载流子为空穴。

§1-2PN结

一、PN结的基本原理

1、 什么是PN结

 将一块P型半导体和一块N型半导体紧密第结合在一起时,交界面两侧的那部分区域。

2、 PN结的结构

分界面上的情况:

P区:

空穴多

N区:

自由电子多

扩散运动:

多的往少的那去,并被复合掉。

留下了正、负离子。

(正、负离子不能移动)

留下了一个正、负离子区──耗尽区。

由正、负离子区形成了一个内建电场(即势垒高度)。

方向:

N-->P

大小:

与材料和温度有关。

(很小,约零点几伏)

漂移运动:

由于内建电场的吸引,个别少数载流子受电场力的作用与多子运动方向相反作运动。

结论:

在没有外加电压的情况下,扩散电流和漂移电流的大小相等,方向相反。

总电流为零。

二、PN结的单向导电特性

 1、 外加正向电压时:

(正偏)

 

结论:

势垒高度PN结宽度(耗尽区宽度)扩散电流

 2、 外加反向电压时:

(反偏)

 

结论:

势垒高度PN结宽度(耗尽区宽度)扩散电流(趋近于0)

此时总电流=反向饱和电流(漂移电流):

I5

注:

反向饱和电流I5只与温度有关,与外加电压无关。

【PN结的反向击穿】:

∙齐纳击穿:

势垒区窄,较高的反向电压形成的内建电场将价电子拉出共价键,导致反向电流剧增。

<4V

∙雪崩击穿:

势垒区宽,载流子穿过PN结时间长,速度高,将价电子从共价键中撞出来,撞出来的电子再去撞别的价电子,导致反向电流剧增。

>7V

  当反向电压在4V和7V之间的时候,两种击穿均有。

【PN结的电容效应】:

∙势垒电容:

外加电压变化引起势垒区宽窄的变化引起。

它与平行板电热器在外加电压作用下,电容极板上积累电荷情况相似。

对外等效为非线性微变电容。

(反偏减小,正偏增大)

∙扩散电容:

当PN结外加正向电压时,由于扩散作用,从另一方向本方注入少子,少子注入后,将破坏半导体的电中性。

为了维持电中性,将会有相同数量的异性载流子从外电路进入半导体,在半导体中形成空穴-电子对储存。

外电压增量引起空穴-电子对存储就象电容充电一样。

PN结等效为:

两个扩散电容+一个势垒电容。

(对外等效为三个容性电流相加。

等效对外不对内)

反偏:

扩散电流=0,以势垒电容为主。

正偏:

扩散电流很大,以扩散电容为主。

§1-3二极管

一、构成与符号

 二、伏安特性曲线

  1.正向特性:

正向电压较小时,正向电流几乎为0──死区。

当正向电压超过某一门限电压时,二极管导通,电流随电压的增加成指数率的关系迅速增大。

门限电压(导通电压)──UD:

硅管──0.5-0.7V

锗管──0.1-0.2V

  2.反向特性:

当外加电压小于反向击穿电压时,反向电流几乎不随电压变化。

当外加电压大于反向击穿电压UB时,反向电流随电压急剧增大(击穿)。

  3.伏安特性解析式

在理想条件下,PN结的伏安(电流与结电压)关系式:

──呈指数关系

式中:

q──电子电荷量

K──波尔兹曼常数

T──绝对温度0K(-273C)

令:

(室温下UT=26mV)

伏安关系式简化为:

       当电压超过100mV时,公式可以简化为:

        加正向电压时:

加反向电压时:

I=-IS

 4.二极管的等效电阻

   从二极管的伏安特性曲线上可以看出:

二极管是非线性元件,等效电阻的大小与Q点有关。

    Ø     直流电阻(静态电阻)──

    Ø     交流电阻──

    例:

用万用表测电阻和二极管换不同档测量电阻,结果一样吗?

    特殊二极管:

稳压二极管;变容二极管;发光二极管;

 

 二极管应用:

1.整流:

2.稳压:

稳压管稳压电路。

P22Fig1-3-16

3.限幅器:

二极管限幅器。

P24-26串联、并联、双向。

 例:

P521-2

§1-4晶体三极管

一、结构及符号

∙ b区极薄

∙ C结面积>e结

∙ e区搀杂浓度最大,b区搀杂浓度最低。

   (不能将两个二极管兑成一个三极管来用)

 二、晶体管的四种工作状态

状态

发射结电压

集电结电压

放大

截止

饱和

倒置

 

三、放大状态下晶体管中的电流

注:

交流有效值──大写小写;交流值──小写小写;

瞬时值──小写大写;静态值──大写大写;

*注意:

实际电流的流向是与电子流的方向相反的。

  用很少量的IB来控制IC。

即三极管实际上是一个电流控制电流源-CCCS。

   三个电极电流满足:

  IE=IB+IC

   工作在放大状态下的NPN管一定为:

IB、IC流入,IE流出。

   工作在放大区的条件:

NPN──UC>UB>UE;

 PNP──UC

   发射结正偏,集电结反偏。

   例:

集成电路中没有三极管,是用三极管的一个结来代替,用哪个结?

e结。

(C结漏电流大)

四、晶体管工作的三种组态

  【共射】对电压、电流都有放大倍数。

      【共基】无电流放大倍数,有电压放大倍数。

(ICIE)

  【共集】无电压放大倍数,有电流放大倍数。

(UBEV)

 五、晶体三极管特性曲线

  共射组态放大电路的特性曲线:

∙输入特性曲线(IB--UBE)UCE

UBE为一个正偏的PN结,所以特性曲线和二极管的正向特性曲线相同。

有:

∙ 输出特性曲线(IC--UCE)IB

  因为三极管有三个电极,要想在二维坐标系上表示出三个变量之间的关系。

特性曲线就得是一族。

有:

 

 

 

  

特点:

   截止区:

iB=0;iC=0;UCE=UCC;

   放大区:

iC受iB控制。

   各条曲线近似水平,iC和UCE的变化基本无关,呈近似恒流特性。

   饱和区:

iC不受iB控制。

UCE=0.3V

 六、晶体三极管的主要参数

 1.电流放大系数

∙直流电流放大系数

∙交流短路电流放大系数

∙共基极接法电流放大系数

      

 2.极限参数

∙集电极最大允许电流ICOM:

下降至正常值时候的0.707倍所对应的IC值。

∙反向击穿电压BUCEO:

当基极开路时集电极和发射极之间的反向击穿电压。

∙集电极最大允许功耗PCM。

 3.三极管的输入电阻

∙共射电路的输入电阻:

BE结电阻:

∙共基极输入电阻:

§1-5场效应管

场效应管的特点:

∙场效应管只靠多子来导电。

它是单极型晶体管。

它只依靠一种载流子导电。

∙三极管是靠多子、少子一起来导电的,又叫双极型晶体管。

它靠两种载流子导电。

∙场效应管的导电途径:

沟道──利用外加电场改变半导体体电阻来进行工作。

(电场效应来工作。

∙输入阻抗十分高。

 场效应管分类:

结型场效应管、绝缘栅型场效应管。

一、结型场效应管

  1.结构:

N区为载流子的主要通道──N沟道。

  2.符号:

N沟道P沟道

              

  3.工作原理:

  靠UDG和USG使两个PN结全部反偏,使耗尽层加宽。

依靠反偏电压的强弱来控制耗尽层的宽窄,(即改变半导体的体电阻)达到控制电流的作用。

VCCS

  并且应有UD>US,才能收集电子。

漏极D和源极S,可以互换着使用。

     要求栅极G一定要反偏。

工作在放大状态时要求有:

      4.输入特性:

  栅极电流就是PN结的反向饱和电流。

它几乎不随电压变化。

     5.输出特性曲线:

──以UGS为参变量,描述ID和UDS之间的关系。

 

二、绝缘栅型场效应管

  1.结构:

(以N沟道为例)

 

 

 

  

2.符号:

 

增强型

耗尽型

N沟道

 

P沟道

 

     场效应管特性比较P47Tab1-2

  3.原理:

Ø 增强型:

原始没有导电沟道,靠外加电压后形成反型层导电沟道。

要求必须给栅极G加正向偏压。

有:

UD>UG>US

Ø  耗尽型:

原来已经有导电沟道存在(掺杂造成的),靠外加电压使沟道中的

载流子耗尽。

所加栅极电压可正、可负。

正:

同增强型;

负:

同结型;

第二章基本放大电路

§2-1晶体三极管基本放大电路

§2-2反馈放大器的基本概念

§2-3频率特性的分析法

§2-4小信号选频放大电路

§2-5 场效应管放大电路

§2-1晶体三极管基本放大电路

一、放大器的组成

1、放大电路的功能和主要研究问题

∙什么是放大器:

输出信号能量>输入信号能量的器件。

(增大的能量是由电源提供的。

∙放大器的要求:

1、能放大;2、不失真;

∙主要问题:

产生失真的条件和如何减小失真;

∙主要指标是放大倍数:

2、三种基本放大电路(三种组态)

  三种组态:

共射;共基;共集;

  要实现放大作用:

必须满足发射结正偏,集电结反偏。

(NPN,PNP都是这样),即:

NPN──UC>UB>UE;

     PNP──UC

3、基本共射放大电路

                 一般RB>>RC;RB几百K,RC几K

二、放大级的图解分析

放大级的图解分析法是利用晶体管的特性曲线通过作图的方法来分析放大电路的基本性能。

图解分析法的特点是──直观。

图解分析法的步骤是:

1、先分析无输入信号时的静态特性。

                  2、 再分析有信号输入时的动态特性。

(一)、静态特性

1、任务:

求解静态工作点Q。

(管子各极电流和各电极之间的电压)

2、静态工作点Q的定义:

未加交流信号的情况下,在固定直流偏压作用下,

IBQ、ICQ、UBEQ、UCEQ也为一个固定的值。

它们在曲线上对应着一个固定的点──Q点。

3、在给定电路中求解静态工作点Q(以共射电路为例)。

*解释:

由于晶体管为非线性元件,它的输出伏安关系符合它的输出特性曲线。

而晶体管所带的负载是电阻,它是线性元件。

伏安关系符合基尔霍夫定律,为一条直线。

(我们将在放大器直流输出回路中满足电压和电流关系的这一条直线称为直流负载线。

)那么放大电路既要满足晶体管的非线性特性曲线,又要满足负载电阻的直线,结论是只能将这两种线画在同一个坐标系中,从中取它们的交点。

这个交点──Q点。

图解法可以直观地反映出Q点改变对放大作用的影响。

求解静态工作点的步骤:

∙列输入方程,求出IBQ:

其中UBE=0.6V

∙列输出方程,在IC──UCE图中画出直流负载线。

∙UCE=UCC-ICRC

∙根据公式:

 分别取 当IC=0时:

UCE=UCC;

oUCE=0时:

IC=UCC/RC;

将这两点连上即得到直流负载线。

  

∙从图上找出交点──静态工作点Q

在图上对应标出IBQ、UCEQ

(二)、动态特性分析

    动态特性──(在静态特性求解完成的基础上分析)电路工作在放大状态条件下,外加交流电压作用时,各个电极电压、电流的变化情况。

∙当外加了交流电压或电流信号时,由于管子和负载也还是要同时满足它们各自的伏安关系曲线,所以工作点将会沿着负载线上下移动。

∙在有外加输入信号作用时,输出的信号为直流和交流的叠加。

 1.作交流负载线

  画出输出回路的交流通路。

由于交流负载的改变,使得交流负载线为一条通过静态工作点Q但是斜率改变为

的直线。

 

 2. 失真分析

静态工作点、输入信号幅度、负载电阻大小对输出波形的影响。

∙负载一定时:

从图中可以看出:

共射电路有倒像。

从上图分析可知:

Q1点合适无失真

Q2点太高饱和失真

Q3点太低截止失真

∙输入信号幅度过大也会造成失真。

(见上图红笔所画)

∙UCC一定时,RC越小,负载线越陡。

当RC过大时,会造成饱和失真。

  结论:

放大器工作无失真条件为:

1、Q点选择合适;

                             2、输入信号幅度不能过大;

                                3、负载大小要合适;

三、放大级的等效电路分析法

  比较:

图解分析法:

可以画出来,直观。

用来研究大信号、非线性失真

等效电路法:

不好画,用来分析小信号时,定量的计算

  等效:

对外不对内。

(对晶体管的外部交流电压、电流等效)

∙当加到发射结上的交流信号电压足够小时;

∙当管子工作在放大区内时;

  这时,我们可以把管子视为一个线性的电流控制电流源(CCCS)。

并可以把它代换成为一个线性有源四端网络。

(一)、晶体管h参数等效电路

 注意:

其中受控源的极性要根据Ube的方向来确定。

输出交流短路时的输入电阻;

输出交流短路时的电流放大系数;

输出交流开路时的输出电导,很小,可忽略。

(它说明输出电压对输出电流的影响。

(二)、用h参数等效电路分析放大器

  共射极放大电路需要计算:

A──放大器的放大倍数

AS──源电压放大倍数

 分析步骤:

∙画出放大电路的交流通路。

(电容短路,直流电源接地)

∙画h参数等效短路图。

(将晶体管h参数等效电路去替代交流通路中的晶体管。

将等效电路的e、b、c相应地接在电路中的e、b、c上。

∙计算A

其中:

; 

(负号表示,输入和输出信号之间有倒相)

∙计算AS

应用戴维南等效电源定理可以将等效电路的左半部分进行化简:

化简后的图为:

       

如果满足Rb>>Rs的条件,则有Rs’=Rs//Rb

Rs,上式可以化简为:

∙放大器的输入电阻Ri

∙放大器的输出电阻Ro

(三)、放大倍数的对数表示法

∙采用对数表示的原因

   人的感官,对声音和光线的强弱的感觉与它们功率的对数成正比。

即:

声音功率增强一倍,人没觉得强烈了那么多。

只有当功率的对数值增强了一倍

时,人们才觉得强了一倍。

∙分贝(贝尔)

   贝尔──取功率放大倍数以10为底的对数值。

   

 贝尔

   1贝尔=10分贝(dB)

   又因为:

功率和电压/电流的平方成正比。

有:

             

  dB

                 

   dB

例:

功率放大10倍  lg10=10dB

   电压放大10倍  2lg10=20dB

   功率增大1倍   10lg2=3dB

   电压增大1倍   2lg2=6dB

 

(四)、共基极放大级的特点

   电路图略。

∙结论:

  电路有电压放大倍数:

大小与共射电路相同;

  方向与共射电路相反;

  即:

输入信号和输出信号同相。

  无电流放大倍数 IC

IE  。

五、多级放大级

∙耦合方式:

直接耦合、阻容耦合、变压器耦合

∙多级放大器的放大倍数:

   总放大倍数(增益)=各级放大器放大倍数(增益)的乘积

总放大倍数(分贝)=各级放大器放大倍数(分贝)的和

§2-2反馈放大器的基本概念

一、什么是反馈

反馈──把放大器输出信号(电压或电流)的一部分(或全部)送回输入端。

净输入信号Xi’=原外加信号Xi+反馈信号XF

显然:

正反馈使放大倍数增加;

负反馈使放大倍数下降;

负反馈在放大器中的作用:

交流:

稳定放大量;减小非线性失真;扩展同频带;

直流:

稳定静态工作点Q;

二、单级反馈电路

   

                    (a)无反馈(b)RE:

串联-电流-负反馈

            

                      (c)        RF:

并联-电压-负反馈

  首先判断电路有无反馈存在。

(a)无、(b)(c)有。

  图(b)步骤:

1、先判断有无反馈:

有;反馈支路RF;

2、 实际分析:

3、 再判断反馈类别:

用瞬时极性法标注b(+);e(+);

输入信号和反馈信号加在管子不同电极,并且符号相同。

负反馈速判断反馈正、负性质的方法──瞬时极性法

  步骤:

1、 假定输入信号的瞬时极性,逐步标出放大器各级输入和输出电压的极性

2、 将反馈电压的瞬时极性和输入电压的瞬时极性相比较。

判断:

∙两个信号加到同一电极上,极性相反──负反馈;

                       极性相同──正反馈;

∙两个信号加到不同电极上,极性相同──负反馈;

                       极性相反──正反馈;

判断反馈性质:

输入端串/并联反馈、输出端电流/电压反馈

1、从输入电路的连接方式上来加以区分判断串、并联反馈

∙    从改变信号源内阻RS的大小,观察反馈量的变化来区分

串联反馈:

信号源短路──反馈存在

并联反馈:

信号源短路──反馈不存在

∙   从反馈量的连接形式上区分

串联反馈:

反馈信号与输入信号加在晶体管的不同电极上;

并联反馈:

反馈信号与输入信号加在晶体管的同一电极上;

2、从输出电路的连接方式上来区分电压反馈和电流反馈

∙   电压反馈──反馈电压和输出电压成正比;

∙    电流反馈──反馈电流和输出电流成正比;

∙    从改变负载电阻RC的大小,观察反馈量的变化来区分

当:

RC至0时,UF至0………………电压反馈;

当:

RC至0时,IF依然存在………………电流反馈;

∙   从连接形式上区分:

当:

反馈信号和输出信号接在同一点上时──电压反馈;

 反馈信号和输出信号接在不同点上时──电流反馈;

注意:

当负载不变的条件下,输入信号变化,输出信号也随之变化,并且电压和电流成正比。

可见:

当负载不变时,电压反馈和电流反馈无区别。

三、两级反馈电路

∙  判断有无反馈:

(本级;越级;)

本级:

T1管:

无反馈;T2管:

有反馈,反馈支路──RE2;

越级:

T1管──T2管:

有反馈,反馈支路──RF;

∙  用瞬时极性法进行标注:

(见图)

∙  结论:

本级:

T1管:

无反馈;T2管:

有反馈,反馈支路──RE2;负反馈;

越级:

T1管──T2管:

有反馈,反馈支路──RF;负反馈;

四、负反馈放大电路的一般表达式

  开环电压增益:

 电压反馈系数:

 环反馈系数:

 电压反馈深度:

 闭环电压增益:

(加反馈后的电压放大倍数)

∙深度负反馈──反馈信号远远大于放大器的有效输入信号的负反馈电路。

深度负反馈情况下:

由于1+AF>10时

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教学研究 > 教学反思汇报

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1