北京市海淀区届高三上学期期中考试物理试题 扫描版含答案.docx
《北京市海淀区届高三上学期期中考试物理试题 扫描版含答案.docx》由会员分享,可在线阅读,更多相关《北京市海淀区届高三上学期期中考试物理试题 扫描版含答案.docx(11页珍藏版)》请在冰豆网上搜索。
北京市海淀区届高三上学期期中考试物理试题扫描版含答案
海淀区高三年级第一学期期中练习参考答案及评分标准
物理2013.11
一、本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,有的小题只有一个选项是符合题意的,有的小题有多个选项是符合题意的。
全部选对的得3分,选不全的得2分,有选错或不答的得0分。
题号
1
2
3
4
5
6
7
8
9
10
答案
AD
B
CD
BD
AC
CD
BC
AC
AC
BD
二、本题共2小题,共15分。
11.(7分)
(1)C(1分)
(2)0.680(1分);1.61(2分)
(3)平衡摩擦力过度(1分)
砂和小砂桶的总质量m不远小于小车和砝码的总质量M(2分)
12.(8分)
(1)BC(2分)
(2)mA·OP=mA·OM+mB·ON(2分);OP+OM=ON(2分)
(3)
=
+
(2分)
三、本题包括6小题,共55分。
解答应写出必要的文字说明、方程式和重要的演算步骤。
只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位。
13.(8分)解:
(1)设物体受到的滑动摩擦力为Ff,加速度为a1,则Ff=μmg
根据牛顿第二定律,物块在力F作用过程中,有F-Ff=ma1(1分)
解得a1=2m/s2(1分)
(2)设撤去力F时物块的速度为v,由运动学公式v2=2a1x(1分)
解得v=4.0m/s(2分)
(3)设撤去力F后物体的加速度为a2,根据牛顿第二定律,有Ff=ma2
解得a2=4m/s2(1分)
由匀变速直线运动公式得
解得t=1s(2分)
14.(8分)解:
(1)设滑块滑到斜面底端时的速度为v
依据机械能守恒定律有mgLsinθ=
解得v=6.0m/s(2分)
(2)滑块滑到斜面底端时速度在竖直方向上的分量vy=vsinθ
解得vy=3.6m/s
重力对物体做功的瞬时功率P=mgvy
解得P=3.6W(3分)
(3)设滑块下滑过程的时间为t,由运动学公式
,
mgsinθ=ma
解得t=1.0s
在整个下滑过程中重力对滑块的冲量大小IG=mgt
解得IG=1.0N·s(3分)
15.(9分)解:
(1)根据万有引力定律,
(2分)
得
(2分)
(2)设地球质量为M,在地球表面任一物体质量为m
在地球表面附近满足G
=mg
得GM=R2g
解得地球的质量M=
(3分)
地球的体积V=
解得地球的密度
(2分)
16.(10分)解:
(1)设滑块从C点飞出时的速度为vC,从C点运动到A点时间为t,滑块从C点飞出后,做平抛运动
竖直方向:
2R=
gt2(1分)
水平方向:
x=vCt(1分)
解得:
vC=10m/s(1分)
设滑块通过B点时的速度为vB,根据机械能守恒定律
mv
=
mv
+2mgR(1分)
设滑块在B点受轨道的支持力为FN,根据牛顿第二定律
FN-mg=m
联立解得:
FN=9N(1分)
依据牛顿第三定律,滑块在B点对轨道的压力FN=FN=9N(1分)
(2)若滑块恰好能够经过C点,设此时滑块的速度为vC,依据牛顿第二定律有
mg=m
解得vC=
=
=5m/s(1分)
滑块由A点运动到C点的过程中,由动能定理
Fx-mg2R≥
(2分)
Fx≥mg2R+
解得水平恒力F应满足的条件F≥0.625N(1分)
17.(10分)解:
(1)设动车组在运动中所受阻力为Ff,动车组的牵引力为F,
动车组以最大速度匀速运动时,F=Ff
动车组总功率P=Fvm=Ffvm,P=4Pe(1分)
解得Ff=4×104N
设动车组在匀加速阶段所提供的牵引力为Fʹ,
由牛顿第二定律有Fʹ-Ff=8ma(1分)
解得Fʹ=1.2×105N(1分)
(2)设动车组在匀加速阶段所能达到的最大速度为v,匀加速运动的时间为t1,
由P=Fʹv解得v=25m/s(1分)
由运动学公式v=at1解得t1=50s
动车在非匀加速运动的时间t2=t-t1=500s(1分)
动车组在加速过程中每节动车的平均功率
代入数据解得
=715.9kW(或约为716kW)(2分)
(3)设动车组在加速过程中所通过的路程为s,由动能定理
(1分)
解得s=28km(2分)
18.(10分)解:
(1)对于物体A、B与轻质弹簧组成的系统,当烧断细线后动量守恒,设物体B运动的最大速度为vB,有
mAvA+mBvB=0
vB=-
=-
由图乙可知,当t=
时,物体A的速度vA达到最大,vA=-4m/s
则vB=2m/s
即物体B运动的最大速度为2m/s(2分)
(2)设A、B的位移大小分别为xA、xB,瞬时速度的大小分别为vA、vB
由于系统动量守恒,则在任何时刻有mAvA-mBvB=0
则在极短的时间Δt内有mAvAΔt-mBvBΔt=0
mAvAΔt=mBvBΔt
累加求和得:
mA∑vAΔt=mB∑vBΔt
mAxA=mBxB
xB=
xA=
xA
依题意xA+xB=L1-L
解得xB=0.1m(4分)
(3)因水平方向系统不受外力,故系统动量守恒,因此,不论A、C两物体何时何处相碰,三物体速度相同时的速度是一个定值,总动能也是一个定值,且三个物体速度相同时具有最大弹性势能。
设三个物体速度相同时的速度为v共
依据动量守恒定律有mCvC=(mA+mB+mC)v共,解得v共=1m/s
当A在运动过程中速度为4m/s且与C同向时,跟C相碰,A、C相碰后速度v1=vA=vC,设此过程中具有的最大弹性势能为E1
由能量守恒E1=
(mA+mC)v12+
mB
–
(mA+mB+mC)
=1.8J
当A在运动过程中速度为-4m/s时,跟C相碰,设A、C相碰后速度为v2,由动量守恒
mCvC–mAvA=(mA+mC)v2,解得v2=0
设此过程中具有的最大弹性势能设为E2
由能量守恒E2=
(mA+mC)v22+
mBvB2–
(mA+mB+mC)v共2=0.2J
由上可得:
弹簧具有的最大弹性势能Epm的可能值的范围:
0.2J≤Epm<1.8J。
(4分)
说明:
计算题中用其他方法计算正确同样得分。