供变电课程设计.docx

上传人:b****6 文档编号:5370376 上传时间:2022-12-15 格式:DOCX 页数:13 大小:146.15KB
下载 相关 举报
供变电课程设计.docx_第1页
第1页 / 共13页
供变电课程设计.docx_第2页
第2页 / 共13页
供变电课程设计.docx_第3页
第3页 / 共13页
供变电课程设计.docx_第4页
第4页 / 共13页
供变电课程设计.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

供变电课程设计.docx

《供变电课程设计.docx》由会员分享,可在线阅读,更多相关《供变电课程设计.docx(13页珍藏版)》请在冰豆网上搜索。

供变电课程设计.docx

供变电课程设计

存档资料成绩:

 

华东交通大学理工学院

课程设计报告书

 

所属课程名称供变电技术课程设计

题目  110KV牵引变电所设计  

分院  电信分院   

专业班级

学  号  

学生姓名      

指导教师龚根平  

 

2012年6月22日

华东交通大学理工学院

课程设计(论文)任务书

专业电气工程及其自动化班级电力1班

姓名

一、课程设计(论文)题目供变电技术课程设计

二、课程设计(论文)工作:

自2012年6月19日起至2012年6月25日止。

三、课程设计(论文)的内容要求:

1、变压器的选择形式,类型;

2、各线路的接线形式,类型及选择的器件型号;

3、电气主接线图的原理及各元件的类型选择;

4、A3接线图一张。

序号

项目

等   级

优秀

良好

中等

及格

不及格

1

课程设计态度评价

2

出勤情况评价

3

任务难度评价

4

工作量饱满评价

5

任务难度评价

6

设计中创新性评价

7

论文书写规范化评价

8

综合应用能力评价

综合评定等级

学生签名:

2012年6月22日

课程设计(论文)评阅意见

 

评阅人 职称

20年月日

目 录

第1章课程设计内容及要求..............................................2

第2章简述设计方案.............................................................5

第3章牵引变压器容量计算................................................7

第4章导线和主接线选择....................................................11

第5章主接线图......................................................................16

第6章参考文献.....................................................................17

第二章简述设计方案

本课程设计较系统的阐明了牵引变电B设计的基本方法和步骤。

重点在于对牵引变压器的选择、牵引变压器的容量计算、运行技术指标的计算;牵引变电所电压不平衡度计算;电气主接线的设计;导线的选择。

分章节进行阐述,经过多方面的校验,从经济实用的角度出发,力求设计出一套较优的方案。

包含有A、B两牵引变电所的供电系统示意图如图1-1所示:

图1-1牵引供电系统示意图

表1-1设计基本数据

项目

B牵引变电所

左臂负荷全日有效值(A)

310

右臂负荷全日有效值(A)

280

左臂短时最大负荷(A)

400

右臂短时最大负荷(A)

350

牵引负荷功率因数

0.85(感性)

牵引变压器接线型式

YN,d11

牵引变压器110kV接线型式

简单(双T)接线

左供电臂27.5kV馈线数目

2

右供电臂27.5kV馈线数目

2

10kV地区负荷馈线数目

2回路工作,1回路备用

预计中期牵引负荷增长

40%

图1-1牵引变电所中的两台牵引变压器为一台工作,另一台备用。

电力系统1、2均为火电厂。

其中,电力系统容量分别为250MVA和200MVA。

选取基准容量

为200MVA,在最大运行方式下,电力系统1、2的综合电抗标幺值分别为0.13和0.15;在最小运行方式下,电力系统的综合标幺值分别为0.15和0.17。

对每个牵引变电所而言,110kV线路为一主一备。

图1-1中,

长度为25km、40km、20km.线路平均正序电抗

为0.4

/km,平均零序电抗

为1.2

/km。

 

第三章牵引变压器容量计算

 变压器的容量大小关系到能否完成国家交给的运输任务并节约运营成本。

容量过小会使牵引变压器长期过载,将造成其寿命缩短,甚至烧损;容量过大将使牵引变压器长期不能满载运行,从而造成其容量浪费,损耗增加,使运营费用增大。

所以通过变压器容量的计算,能更好的选择一个安全经济的设计方案。

1、牵引变压器计算容量

牵引变电所的主变压器采用YN,d11接线形式,主变压器正常负荷计算:

(kVA)(3-1)

=310A,

=280A代入(3-1)可以求得:

S=19850(kVA)

紧密运行状态下的主变压器计算容量:

(kVA)(3-2)

=400A,

=280A代入(3-2)可以求得:

=25431(kVA)

为了满足铁路运输的不断发展,牵引变压器要留有一定余量,预计中期牵引负荷增长为40%。

(kVA)(3-3)

可以求得:

=27789(kVA)

于是根据所得容量,查询附录一,可选择

型三相双绕组牵引变压器。

2、牵引变压器过负荷能力校验

(kVA)(3-4)

可求得:

=16203(kVA)

3、牵引变压器功率损耗计算

牵引供电系统的电能损失是电气化铁道的一项重要的运营指标,具有很重要的经济意义。

不同的牵引变压器接线型式使牵引供电系统的电能损失不同,经过相应的计算,以求得最好的供电方案。

已知

=310A,

=280A,根据公式(3-5)计算:

(3-5)

所得结果代入公式(3-6)中。

在牵引变电所中,如果是一台牵引变压器运行,则全年实际负载电能损失为:

kWh/年)(3-6)

可求得

=13.4551(

kWh/年)。

全年实际空载电能损失为:

kWh/年)(3-7)

可求得

=33.7260(

kWh/年)。

全年牵引变压器的实际总电能损失为:

kWh/年)(3-8)

可求得:

=47.1811(

kWh/年)。

通过计算,我们发现可以采取限制供电臂的长度、实行牵引变压器的经济运行、装设并联电容补偿装置等方法来减少牵引供电系统电能损失。

4、构造归算到110kV的等值负序网络

如图所示:

5、牵引变电所110kV母线电压不平衡度计算及校验

相负序电压计算按公式(3-11)进行:

(V)(3-11)

将已求得的

分别代入公式(3-11),求得系统二运行时的相负序电压

=1105V。

110kV母线电压不平衡度计算及校验按下式进行:

%

.5%(3-12)

本次课程设计按2.5%考核,将

=1105V,代入公式(3-12)得:

1.9%<2.5%所以,满足校验。

从牵引供电系统方面来说,采取换接相序、采用平衡牵引变压器和并联补偿装置等方法来改善负序的作用。

 

第4章导线和主接线选择

1、室外110kV进线侧的母线选择

室外110kV进线侧的母线为软母线,母线长为20㎞,且每段负荷不同,母线截面可采取相同截面,以按最大长期工作电流方式来选择为宜。

设计中三相双绕组牵引变压器的选择型号为SF1-31500/110。

母线的最大长期工作电流可按变压器过载1.3倍考虑。

A

由所给资料查出钢芯铝绞线(LGJ-70)的允许载流量为260A(基准环境温度为25℃时),符合式子

(k=1)

式中:

—通过导线的最大持续电流;

—对于额定环境温度,导线长期允许电流;

—温度修正系数。

故初步确定110kV进线侧的母线选用截面积为70mm2的钢芯铝绞线(LGJ-70)。

校验母线的热稳定性:

表4-2各种起始温度下C值

起始温度(℃)

40

45

50

55

60

65

70

75

80

90

铝材导体

99

97

95

93

91

89

87

85

83

79

铜材导体

186

183

181

179

176

174

171

169

165

161

(4-2)

其中:

—满足热稳定要求的导线最小截面积(mm2);

—热稳定系数(如表4-3);

—集肤效应系数。

我们选取

=0.01;

—假想时间;

=

=1.50+1.56+0.05=3.11s。

为继电保护整定时间,

为断路器动作时间。

表4-4各级继电保护时间配合

计算点

1

2

3、4

5

(s)

1.50

1.00

0.50

0.20

(s)

1.56

1.06

0.56

0.26

选C=83,经计算,

=194.14mm2。

由于S=70<

=194.14,所以所选截面的母线不能满足热稳定要求,必须选择型号为LGJ—240的钢芯铝绞线。

2、室外27.5kV侧的母线选型及校验

母线的最大长期工作电流可按变压器过载1.3倍考虑,选择容量为1600kVA电压27.5/10.5千伏的三相双绕组电力变压器。

经计算:

=

(A)(4-3)

由所给资料查出钢芯铝绞线(LGJ-10)的允许载流量为86A(基准环境温度为25℃时),符合式子

(k=1),故初步确定27.5kV侧的母线选用截面积为10mm2的钢芯铝绞线(LGJ-10)。

校验母线的热稳定性:

选C=99,

=1.00+1.06+0.05=2.11s,

=74.9mm2。

由于S=10<

=74.9,所以所选截面的母线不能满足热稳定要求,必须选择型号为LGJ—95的钢芯铝绞线。

3、室外10kV馈线侧的母线选型及校验。

母线的最大长期工作电流可按变压器过载1.3倍考虑,选择容量为1600kVA电压27.5/10.5千伏的三相双绕组电力变压器。

经计算:

(A)(4-4)

由所给资料查出钢芯铝绞线(LGJ-25)的允许载流量为138A(基准环境温度为25℃时),符合式子

(k=1),故初步确定10kV侧的母线选用截面积为25mm2的钢芯铝绞线(LGJ-25)。

校验母线的热稳定性:

选C=87,

=0.20+0.26+0.05=0.51s,

=11.02mm2。

由于S=25>

=11.02,所以所选截面的母线能满足热稳定。

4、软母线选择

110kV进线侧,进入高压室的27.5kV进线侧,从高压室出来的27.5kV馈线侧,10kV馈线侧的母线均为软母线。

软母线进行选型,热稳定校验(无需进行动稳定校验)。

计算方法:

按导线长期发热允许电流选择导线。

温度修正系数k由下式求得:

(4-1)

式中:

—运行的允许温度,对室外有日照时取80℃,室内取70℃;

t—实际环境温度,℃。

设计时取t=25℃,那么在室外有日照时k=1,在室内时k=1。

工程中常采用查表的方法求母线和导体的容许电流(载流量)。

表4-1导线的选择与校验

导线名称

选择

校验

按导线长期发热允许电流选择

按经济电流密度选择

动稳定

热稳定

母线及短导线

__

普通导线

__

__

5、主接线选择

本设计采用双T接线方式做为牵引变电所B的主接线。

在双T接线中,两路电源,两台变压器只需两套断路器,所以与桥型接线相比,双T接线需要高压电器更少,配电装置结构更简单,线路继电保护也简单。

虽说由于分支数过多,对可靠性的影响会相应增大,但对于本设计,由于只需2路馈线,所以选双T接线有更高的经济实用性,并能达到可靠性要求。

本设计采用100%完全备用,当一套设备发生故障,经过正确的倒闸操作顺序,另一设备启用,以提高供电的可靠性。

 

第五章主接线图

参考文献(资料)

[1]李彦哲,胡彦奎,王果等.电气化铁道供电系统与设计[M].兰州:

兰州大学出版社,2006.

[2]贺威俊,简克良.电气化铁道共变电工程[M].北京:

铁道出版社,1983.

[3]刘国亭.电力工程CAD[M].北京:

中国水利水电出版社,2006.

[4]汤蕴缪,史乃.电机学[M],北京:

机械工业出版社,2005.

[5]张保会,尹项根.电力系统继电保护[M].北京:

中国电力出版社,2005.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1