基于ARM的CAN总线智能照明控制系统设计毕业设计论文.docx

上传人:b****5 文档编号:5366809 上传时间:2022-12-15 格式:DOCX 页数:83 大小:3.41MB
下载 相关 举报
基于ARM的CAN总线智能照明控制系统设计毕业设计论文.docx_第1页
第1页 / 共83页
基于ARM的CAN总线智能照明控制系统设计毕业设计论文.docx_第2页
第2页 / 共83页
基于ARM的CAN总线智能照明控制系统设计毕业设计论文.docx_第3页
第3页 / 共83页
基于ARM的CAN总线智能照明控制系统设计毕业设计论文.docx_第4页
第4页 / 共83页
基于ARM的CAN总线智能照明控制系统设计毕业设计论文.docx_第5页
第5页 / 共83页
点击查看更多>>
下载资源
资源描述

基于ARM的CAN总线智能照明控制系统设计毕业设计论文.docx

《基于ARM的CAN总线智能照明控制系统设计毕业设计论文.docx》由会员分享,可在线阅读,更多相关《基于ARM的CAN总线智能照明控制系统设计毕业设计论文.docx(83页珍藏版)》请在冰豆网上搜索。

基于ARM的CAN总线智能照明控制系统设计毕业设计论文.docx

基于ARM的CAN总线智能照明控制系统设计毕业设计论文

 

广西科技大学

毕业设计(论文)说明书

课题名称基于CAN总线的智能照明控制系统

设计

 

摘要

本设计是基于CAN总线的智能照明控制系统。

设计中采用主从节点组网设计方案,通过主节点与多个从节点之间的相互通信以实现对照明设备的远程实时监控。

主节点采用NXP公司生产的ARM7系列LPC2119微处理器和其内部集成的CAN控制器以及PCA82C250收发器设计出主节点硬件原理图,并制作出主节点硬件电路板。

从节点采用STC89C52单片机和SJA1000独立CAN控制器以及PCA82C250CAN总线收发器,设计出从节点硬件原理图并制作出2个从节点实验电路板。

通过将主从节点实验电路板挂接到网络构成一个一主多从的主从式照明控制局域网络。

利用该网络进行CAN总线照明控制系统理论研究和实验测试。

在本文中详细的介绍了CAN总线主从节点的软硬件设计原理、CAN总线通信原理、以及CAN总线应用层协议的制定,并采用SD卡存储技术、TFT彩屏显示技术、触摸屏技术等现实了友好的人机界面。

在TFT液晶显示方面是本设计的一大亮点,设计中模拟工业控制工艺流程图,对工艺中涉及的总线、灯设备、板卡等进行精心绘制显示。

使整个控制系统结构清晰、形象、逼真。

在输入设备方面是本设计的第二大亮点,本设计采用当前较为先进方便的触摸屏输入技术,为用户提供一个方便易捷的输入方式,以实现人机交互。

灯设备离线检测功能是本设计的又一大亮点,本设计采用定时询问方法,实现了从节点的离线检测功能。

总之,在本设计中,主节点实现了对多个从节点灯设备的远程设置和监控功能、离线检测功能、运行通信指示功能、实时更新显示功能等。

从节点具有独立设置、控制本节点灯设备的功能。

整体系统运行可靠,通信正常,不出现通信拥堵、死机等现象。

并开发出具有一定应用意义的系统软硬件,实现了照明灯设备的有效控制。

 

关键词:

CAN总线;节点;照明控制;TFT;触摸屏技术;SD卡

Abstract

Thedesignisintelligentlightingcontrolsystem.It’sbasedonCANbus.Inthedesignweusemasterandslavenetworknode.ByThemaincommunicationbetweenthemasternodeandmultipleslavenodestomaketheremotereal-timemonitoringoflightingequipmentsuccessful.ThemasternodeusestheARM7familyNXPLPC2119microprocessorsandintegratedtoitsinternalCANcontrollerandPCA82C250transceiverdesignhardwareschematicdiagramofthemasternode,andcreatethehardwarecircuitboardofthemasternode.ThesalvenodeuseSTC89C52microcontrollerSJA1000stand-aloneCANcontrollerandPCA82C250CANbustransceiverdesignfromthenodehardwareschematicdiagramandalsocreatetwonodesbreadboard.Byputthemasterandslavenodeexperimentalcircuitboardtothemainnetworktoconstituteamainandsomeslaveslightingcontrollocalareanetwork.UsingthenetworktoresearchandexperimentaltestingoftheCANbuslightingcontrolsystem.

InthispaperadetailedintroductionmasterandslavenodeoftheCANbus,hardwareandsoftwaredesignprinciples,theprincipleofCANbuscommunication,theformulationoftheCANbusapplicationlayerprotocol,SDcardstoragetechnology,TFTcolordisplay,touchscreentechnologyandotherpracticalfriendlyinterface.TheTFTLCDisoneofthemostwonderfulofthisdesign.Inthedesign,wesimulateindustrialcontrolprocessflowdiagramofthebusinvolvedintheprocess,lightequipment,boards,carefullydrawingdisplay.Andthenmakethecontrolsystemmoreclearimageandvivid.Advancedandconvenienttouch-screeninputtechnologyarethesecondhighlightsinthedesign.Becauseitapplyaconvenientinputtotheowners.ThethirdhighlightsisthatLightequipmentofflinedetection.SoWeusefromtimetotimeask,fromthenodeofflinedetection.

Inshort,inthisdesign,themasternodetomultipleremotesetupandmonitoringfunctionsoflightequipmentfromthenodeofflinedetection,runcommunicationindicator,updatedinrealtimedisplay.TheslavenodeWithindependentsettings,controlthefunctionofthelampdeviceofthenodefromthenode.Theoverallsystemisreliable,normalcommunication,thecommunicationcongestion,crashesandsoon.Anddevelopsystemsoftwareandhardwarewithacertainsignificanceofapplicationtoachieveeffectivecontrolofthelightingequipment.

 

Keyword:

CANbus;node;Lightingcontrol;TFT;Touchscreentechnology;SDcard

1绪论

1.1课题背景

现场总线是用于现场仪表与控制系统和控制室之间的一种全分散、全数字化、智能、双向、互联、多变量、多点、多站的通信网络,它作为工业数据通信网络的基础,沟通了生产过程现场级控制设备之间及其更高控制管理层之间的联系。

由于现场总线适应了工业控制系统向分散化、网络化和智能化的发展趋势,它一经产生便成为全球自动化技术的热点。

它的出现,导致了目前生产的自动化系统结构和设备的深刻变革。

照明是利用各种光源,照亮工作和生活场所或个别物体的措施,利用太阳能和天空光的称“天然采光”,利用人工光源的称“人工照明”。

照明控制是对照明使用的质和量的驾驭,对包括人工光源和自然光源在内的各种光源的使用状态进行调整,以实现更舒适、更优美、更节能的照明环境的具体手段。

随着科技的发展和人们物质、精神生活水平的提高,照明不仅仅是满足人们视觉上明亮的要求,还要满足艺术性的要求,要创造出丰富多彩的意境,给人们以享受。

自1973年世界上发生了第一次能源危机以来,国际上对照明节能的逐渐重视起来,并提出了“绿色照明”理念,在发展绿色照明工程的过程中照明控制起了非常重要的作用,这也在很大程度上促进了照明控制技术的发展。

因此,本课题就是利用高性价比、安全可靠运用广泛的CAN总线控制网络与照明设备构成CAN网络智能照明控制系统。

因涉及到相关总线技术,所以先介绍一下其内容。

1.2现场总线的技术特点和现状

(1)系统开放性好

(2)具有互可操作性与互用性

(3)使现场设备具有智能化和功能自治性

(4)系统结构的高度分散性

(5)对现场环境的强适应性

(6)系统成本低、性能高

在20世纪80年代中期,德、法等欧洲国家的一些大公司相继推出了自己的现场总线产品,同时制定了自己相应的标准。

自20世纪90年代后,现场总线技术得到了迅猛的发展,出现了群雄并起、百家争鸣的局面,全世界发展起来的现场总线已达数十种。

但通过实际应用后,这些现场总线产品的优缺点也日渐明显。

这几种现场总线技术已逐渐具有影响力,并在一些特定的应用领域显示了自己的优势。

CAN局域控制网是目前运用最广泛的现场总线之一,它是一种多主总线,网络上任意一个节点均可以在任意时刻主动地向网络上的其他节点发送信息,而不分主从,节点之间有优先级之分,因而通信方式灵活;CAN可以点对点、一点对多点(成组)及全局广播等几种方式传送和接收数据;CAN采用非破坏性位仲裁技术,优先级发送,可以大大节省总线冲突仲裁时间,在重负荷下表现出良好的性能。

最早运用于汽车工业,随着CAN总线技术的不断发展,其运用领域也得到不断的扩展,如今,在机器人、数控技术、自动化仪表、航空工业等领域,都能看见CAN的影子。

1.3课题的提出及意义

自1973年世界上发生了第一次能源危机以来,国际上对照明节能的逐渐重视起来,并提出了“绿色照明”理念,在发展绿色照明工程的过程中照明控制起了非常重要的作用,这也在很大程度上促进了照明控制技术的发展。

传统的照明控制技术在照明的控制方式上以手动为主,仅能实现简单的开关控制与调光控制。

利用设置在灯具回路的电气参数(电压、电流、频率等),实现调光控制。

这种传统的的照明控制方式,功能简单,布线复杂远不能满足当今社会发展的要求。

随着计算机技术、网络通讯技术、微电子技术、现场总线技术等的发展,利用现场总线智能节点将照明设备构成局域控制网络,形成网络化控制必将成为智能照明控制的发展趋势。

正因为这样研究现场总线与照明控制相结合的技术,必将是未来发展的需要,因此,有必要研究照明控制在现场总线上的应用。

然而,CAN总线又是现场总线的杰出代表之一,因此研究CAN总线对照明的控制有其重大的意义。

这不仅促进了智能照明控制技术的发展,也拓宽了现场总线的应用领域。

还能实现“绿色照明”,节约能源。

考虑到照明控制技术和现场总线技术的结合构成智能网络照明控制系统是未来的发展趋势,因此我们有必要研究基于现场总线局域网络的智能照明控制技术,本课题正是基于此而提出的基于CAN总线的智能照明控制系统设计。

本课题主要任务是研究CAN总线在智能照明设备控制系统中的应用,并且开发出三个智能CAN总线节点,并利用这三个节点,搭建CAN总线局域网络,实现了远距离多节点的照明控制方案,设计中采用一个主控节点,两个从节点,通过主控节点,控制两从节点上的两盏照明灯,照明灯通过AC220V供电,并制作了继电器控制模块,实现强电弱电的隔离。

并通过长距离(20米左右)、多节点联网控制测试,几乎满足实际照明控制系统的所有要求,具有重大的实际应用意义。

2系统设计

2.1设计要求

本题目要求设计一个基于CAN总线的智能照明控制系统。

设计中采用主从节点的网络设计方案,通过主节点对各个从节点的照明灯进行实时监控。

系统要求设计一个主节点,多个从节点,并模拟应用现场,进行试验研究。

主节点具有实时监控各个从节点照明灯开关时间、状态等的功能。

在主节点上,主节点可以随时设置所有从节点开关灯时间及状态,从节点也可以随时设置本节点灯设备的开关情况。

并且,无论是在哪里改变了照明灯设备的开关状态或剩余时间,都能实时的更新主从节点上的显示。

此外,本系统还具有离线检测,通讯指示,运行指示等功能。

当某从节点设备人为的从总线上卸下或由于总线局部断开而造成的节点离线,都能在主节点监控界面上实时显示。

另外,系统具有通信故障指示,当与主节点相连的总线断开时,主节点将作出相应的通信异常指示。

2.2总体设计方案

2.2.1设计思路

本设计是一个基于CAN总线的现场测控网络。

设计中采用主从式总线型网络结构,实现主从节点的信息交流。

并且采用CAN总线的双验收滤波技术,以保证同时支持CAN总线的点对点通信和广播通信方式,为节点间的正确通信打下良好基础。

系统工作流程如下:

首先,在主节点利用触摸屏输入各从节点灯控制信息,点击确定后,先依次将各个从节点的设置信息,以点对点的方式发送给各个从节点,紧接着用广播方式将一个启动灯信号发送给所有的从节点,以保证同时启动所有从节点灯设备。

当从节点设备接收到灯设置信息和确定信号后,从节点将接收到的信息进行解包翻译,并产生照明灯开关控制信号和定时器控制信号以控制灯设备。

在正常运行模式(非设置模式)下,主节点通过不断向各个从节点发送数据请求帧,从节点只有接收到目标地址为自己节点号的数据请求帧,才会将本节点灯设备的开关状态和剩余时间发送给主节点进行更新显示,从而实现主节点对从节点的实时监控。

当从节点将自身的灯控制信息更改后,由于主节点不断的向从节点请求数据,故,各从节点的灯信息也能在主节点上动态更新。

对于离线检测功能的实现,主节点在规定的时间内,检查各个从节点是否发送过数据给主节点,如果没有发送过数据,则认为该从节点已经断开了总线的连接即节点离线。

否则,从节点在线。

在运行指示功能中,当主节点主程序停止运行则指示运行不正常。

具体实现如下,首先定义一个全局变量WorkCount,在主节点主程序的while工作循环中自加,当while循环执行一次,则该变量增加1,当该变量能达到某设定阈值则取反运行指示灯状态并清零WorkCount后重新自加计数,这样当主程序还在运行,则运行指示灯就一直在闪烁。

2.2.2方案论证与比较

考虑到实际因素的制约,所以不可能考虑高成本以及在实验室难以制作的设备,由于照明设备所处的环境差异较大,有些环境较为恶劣,在降低成本的同时还要保证数据通信的可靠性,所以在选择器件时就应优先考虑上述因素。

2.2.2.1主控制器

对于从节点单片机的选择,我们采用比较常用的STC89系列单片机,如STC89C52。

选用该型单片机的原因:

(1)从节点的功能比较单一,程序量不大,采用该型单片机无须扩展程序存储器。

(2)起数据采集和输出控制作用的智能从节点的数据都会及时发送出去,需要的本地存储器容量也不大,采用该型单片机无须扩展数据存储器;

(3)选用该类型单片机,可以采用由德国的Keil公司生产的,在代码生成方面处于世界领先地位Keil软件开发工具,该开发工具比较容易获得,具有友好的界面,我们也比较熟悉。

它内部具有兼容于MCS-51的头文件,编程方便,开发周期短,开发效率高。

故,我们选用STC89C52单片机作为从节点主控制器。

(4)STC89系列单片机具有较丰富的中断和计数器资源;指令与MCS51兼容,在软件编写上比较方便。

比较后选择STC89C52单片机作为智能从节点主控制器芯片。

对于主节点,由于要保存和处理多个节点灯设备的数据,需要较大的RAM容量,而为了建立友好的人机界面,还需要彩屏、触摸屏、SD卡、串口、蜂鸣器、CAN接口电路等外设,程序较为庞大,需要的ROM较大,另外,主节点需要处理大量的数据,需要较快的运算速度,数据处理中常常要用到乘法运算,为了提高数据运算能力,需要硬件乘法器的支持。

然而通常的STC89C52单片机运算速度较慢,RAM和ROM都较小,内部无集成硬件乘法器和CAN控制器等。

因此,不选用STC89C52单片机作为主节点的主控制器。

由于LPC2119ARM系列微处理器运行速度较快,内部有16KRAM和128K的Flash存储器能满足主节点的存储器要求,并且LPC2119内部集成有硬件乘法器和CAN控制器,选用该处理器作为主节点的住控制器,可以提高可靠性并降低制作成本,此外,LPC2119处理器功耗较低,采用3.3V和1.8V供电就可以了,耗电较少。

故,主节点采用NXP公司生产的LPC2119微处理器作为主控制器。

2.2.2.2CAN控制器选择

选择哪种CAN控制器将对整个系统的成本产生较大的影响。

目前市场上CAN控制器分为单片机(或DSP)内嵌式和独立式二大类。

(1)主节点CAN控制器选择

由于主节点选用LPC2119处理器,其内部集成有CAN控制器,故主节点无需再选有独立CAN控制器。

(2)从节点CAN控制器选择

考虑到从节点控制任务简单,为降低成本选用常用的STC89C52作为主控制器,其内部无集成的CAN控制器,故选用独立的CAN控制器芯片。

在这里我们采用Philips公司的独立式CAN控制器SJA1000,目前在国内市场上最热门,它与单片机的接口简单,访问SJA1000就像访问单片机的外部RAM一样,操作简单,方便。

而且SJA1000还是一款支持CAN2.0B协议的CAN控制器芯片,并且其价格也不高,其可采用直列式封装,制作简单。

因此,我们选择SJA1000作为从节点的CAN控制器。

2.2.2.3CAN收发器

对于CAN收发器,只有PCA82C250最为适合了,尽管有TJA1050,PCA82C252,CF15,

Si9200但是PCA82C250在市场应用多,相关的设计较多,因此选择PCA82C250作为CAN收发器。

2.2.2.4CAN通信电缆

为了提高CAN总线通信可靠性和抗干扰能力,我们采用双绞线作为CAN总线通信电缆,双绞线通过双绞,减少自身对外界的电磁波辐射,同时也提高了外部电磁波辐射的抗干扰能力,另外,当平行对线传输高频信号时由于两线之间存在的电容作用,引起信号相位相对滞后,当平行线对双绞时,就会在线对形成电容的同时形成一个串联的电感,以抵消电容的影响,从而提高通信可靠性。

2.2.3系统结构框图

本系统主要采用主从式总线型网络结构。

该网络结构具有结构简单、布线容易、成本低、编程容易等优点。

系统中由CAN主节点、多个CAN从节点、执行机构和灯设备等构成。

在主节点上可以设置或监视所有从节点的灯设备的开关灯状态及剩余时间。

从节点也可以自行设置本节点灯的状态情况。

网络中可以实现点对点的通信方式以及广播发送方式,以确保帧信息的正确达到。

具体系统总体结构框图,如图2.1所示:

图2.1系统总体结构框图

智能通信节点主要由单片机处理器、CAN总线控制器和相应的输入输出设备三部分组成。

首先主节点将带有照明控制信号的控制信息通过CAN总线网络发送到特定的从节点,从节点接收到控制信息后,经过适当的处理,按主节点控制要求产生特定的照明控制信号,以控制相应的照明设备。

从而实现对照明设备的定时开、关控制。

以此同时,从节点不断的对相应照明灯的开关状态、当前剩余时间等数据进行采集,并通过CAN网络发送给主节点显示,以实现对各照明设备的实时监控。

另外,照明灯的控制信号可以在照明设备现场的从节点上设置,也可以在控制室里的主节点上设置。

无论是在哪里改变了照明设备的控制信号,都能实时的刷新主、从节点上的显示状态。

从而使系统控制灵活、方便。

 

3硬件设计

3.1系统硬件结构

系统硬件结构主要包括主节点硬件电路结构和从节点硬件电路结构以及继电器模块等。

主节点由LPC2119ARM7处理器、TFT彩色触摸屏、串口、SD卡、CAN总线驱动电路、蜂鸣器、JTAG接口、独立式键盘、电源电路等模块组成。

主节点硬件结构图如图3.1所示。

图3.1主节点硬件结构

从节点由STC89C52单片机、LCM1602液晶模块、串口、独立式键盘、SJA1000

CAN控制器电路、CAN总线驱动电路、继电器控制电路等模块组成。

从节点硬件结构图如图3.1所示。

图3.2从节点硬件结构

3.2系统单元电路设计

3.2.1主节点单元电路设计

3.2.1.1ARM7最小系统设计

LPC2119最小系统电路主要由LPC2119ARM7处理器、时钟振荡电路、复位电路组成。

时钟振荡电路采用内给定方式,外接11.0592MHZ晶振与两个22pF的起振电容,外接晶振与处理器内部的反相器构成振荡电路产生振荡时钟,经PLL锁相环锁相倍频(或旁路PLL)后为CPU提供工作时钟。

复位电路采用阻容式复位电路,由于LPC2119微处理器的有效复位信号为低电平,故电容与地连接,电容另一端与复位端口相连,以保证复位端口为高电平,以处在正常工作模式。

LPC2119最小系统电路原理图如图3.3所示。

图3.3LPC2119最小系统电路原理图

3.2.1.2TFT彩屏电路设计

TFT彩屏电路包括彩屏模块电路(可移动部分)和控制器与彩屏模块之间的接口电路。

其中,彩屏模块电路主要由TFT液晶电路、触摸屏电路、背光灯电路组成。

触摸屏采用4线电阻式触摸屏,触摸屏控制器采用的是具有12位A/D转换精度的XPT2046芯片。

TFT液晶模块电路原理图如图3.4所示

图3.4TFT液晶模块电路原理图

TFT液晶模块接口电路原理图是处理器与TFT液晶模块接口之间的部分电路。

其主要由34Pin双列直插插座和少量电阻电容组成,用于为TFT液晶模块提供一个插接接口,以使TFT液晶模块与处理器相连。

TFT液晶模块接口电路原理图如图3.5所示。

图3.5TFT液晶模块接口电路原理图

3.2.1.3SD卡接口电路设计

SD卡(SecureDigitalMemoryCard)中文翻译为安全数码卡,是一种基于半导体快闪记忆器的新一代记忆设备,它被广泛地于便携式装置上使用,例如数码相机、个人数码助理(PDA)和多媒体播放器等。

SD卡由日本松下、东芝及美国SanDisk公司于1999年8月共同开发研制。

大小犹如一张邮票的SD记忆卡,重量只有2克,但却拥有高记忆容量、快速数据传输率、极大的移动灵活性以及很好的安全性。

SD卡具有两种操作模式,分别为SD模式和SPI模式。

在这里由于LPC2119处理器没有SD卡接口且SD模式较为复杂,故采用SPI接口模式操作SD卡。

当SD卡刚刚连接时,默认工作方式是SD模式,可以先通过SD指令切换至SPI模式。

然后再利用SPI总线的操作方法读写SD卡。

SD卡的管脚CD(CS)、CMD(MOSI)、DATA0(MISO)、CLK(SCLK)分别于处理器LPC2119的P0.4、P1.17、P1.19、P1.17相连。

利用IO口模拟SPI总线操作,读写SD卡数据。

SD卡接口电路原理图如图3.6所示。

图3

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 院校资料

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1