Power from the Sun Chapter9.docx

上传人:b****3 文档编号:5356223 上传时间:2022-12-15 格式:DOCX 页数:59 大小:1.48MB
下载 相关 举报
Power from the Sun Chapter9.docx_第1页
第1页 / 共59页
Power from the Sun Chapter9.docx_第2页
第2页 / 共59页
Power from the Sun Chapter9.docx_第3页
第3页 / 共59页
Power from the Sun Chapter9.docx_第4页
第4页 / 共59页
Power from the Sun Chapter9.docx_第5页
第5页 / 共59页
点击查看更多>>
下载资源
资源描述

Power from the Sun Chapter9.docx

《Power from the Sun Chapter9.docx》由会员分享,可在线阅读,更多相关《Power from the Sun Chapter9.docx(59页珍藏版)》请在冰豆网上搜索。

Power from the Sun Chapter9.docx

PowerfromtheSunChapter9

9._________________________ConcentratingCollectors

Theopticalprincipleofareflectingparabola(asdiscussedinChapter8)isthatallraysoflightparalleltoitsaxisarereflectedtoapoint. Aparabolictroughissimplyalineartranslationofatwo-dimensionalparabolicreflectorwhere,asaresultofthelineartranslation,thefocalpointbecomesaline. Theseareoftencalledline-focusconcentrators. Aparabolicdish(paraboloid),ontheotherhand,isformedbyrotatingtheparabolaaboutitsaxis;thefocusremainsapointandareoftencalledpoint-focusconcentrators. 

 

Ifareceiverismountedatthefocusofaparabolicreflector,thereflectedlightwillbeabsorbedandconvertedintoheat(ordirectlyintoelectricityaswithaconcentratingphotovoltaiccollector). Thesetwoprincipalfunctions,reflectiontoapointoraline,andsubsequentabsorptionbyareceiver,constitutethebasicfunctionsofaparabolicconcentratingcollector. Theengineeringtaskistoconstructhardwarethatefficientlyexploitsthesecharacteristicsfortheusefulproductionofthermalorelectricalenergy. Theresultinghardwareistermedthecollectorsubsystem. Thischapterexaminesthebasicopticalandthermalconsiderationsthatinfluencereceiverdesignandwillemphasizethermalreceiversratherthanphotovoltaicreceivers.

 

Alsodiscussedhereisaninterestingtypeofconcentratorcalledacompoundparabolicconcentrator(CPC). Thisisanon-imagingconcentratorthatconcentrateslightraysthatarenotnecessarilyparallelnoralignedwiththeaxisoftheconcentrator. 

 

∙Tocompletethissectionwedescribeengineeringprototypeconcentratorsthathavebeenconstructedandtested. Parabolicconcentratorsthatarenotcommercialproductswerechosenfordiscussion. Thisallowsfreediscussionwithoutconcernforrevealingproprietaryinformation. Inaddition,theprototypeconcentratorsdiscussedarerepresentativeoftheparabolicconcentratorsunderdevelopmentforcommercialuse,andconsiderabledesigninformationisavailable.

 

Performancedatafromsomeearlyprototypesarepresented. Thedevelopmentincludesthefollowingtopics:

 

∙ReceiverDesign

oReceiverSize

oReceiverHeatLoss

oReceiverSizeOptimization

∙CompoundParabolicConcentrators(CPC)

∙PrototypeParabolicTroughs

oSandiaPerformancePrototypeTrough

∙PrototypeParabolicDishes

oShenandoahDish

oJPLPDC1

∙OtherConcentratorConcepts

oFixed-MirrorSolarCollector(FMSC)

oMovingReflectorStationaryReceiver(SLATS)

oFixed-MirrorDistributedFocus(FMDF)(sphericalbowl)

∙PrototypePerformanceComparisons

 

 

Specialnotetothereader:

 Theprototypehardwaredescribedinthesectionsbelowrepresentsthestate-of-the-artinthe1970´sandearly1980´s. Forupdatesoncurrentstatusofsolarconcentratorhardware,thereaderisreferredtothewebsiteofTheSunLab(combinedeffortsofSandiaNationalLabsandtheNationalRenewableEnergyLaboratorywebsite:

  http:

//www.energylan.sandia.gov/sunlab/overview.htm andtheInternationalEnergyAgencywebsite:

 http:

//www.solarpaces.org/csp_technology.htm. Readersarealsoencouragedtoaccessthewebsitesofdifferenthardwaremanufacturers.

 

9.1   ReceiverDesign

Thejobofthereceiveristoabsorbasmuchoftheconcentratedsolarfluxaspossible,andconvertitintousableenergy(usuallythermalenergy). Onceconvertedintothermalenergy,thisheatistransferredintoafluidofsometype(liquidorgas),thattakestheheatawayfromthereceivertobeusedbythespecificapplication.

 

Thusfarwehaveconcentratedourattentiononreflectionofincidentsolarenergyandnotbeenconcernedwiththegeometryofthereceiver. Therearebasicallytwodifferenttypesofreceivers-theomnidirectionalreceiverandthefocalplanereceiver.

 

Ratherthandealincompletegeneralityandtalkaboutthemanypossibletypesofreceiversthatcouldfallintothesetwocategories,wediscussonlytwowidelyusedreceivers,thelinearomnidirectionalreceiverandthepointcavityreceiver. Thiswillnotartificiallylimittheapplicabilityofthedevelopmentofthefollowingparagraphsbutwillprovideanicefocustothediscussion.

 

Figure9.1isasphotographofalinearomnidirectionalreceiverusedwithparabolictroughs. Itconsistsofasteeltube(usuallywithaselectivecoating;seeChapter8)surroundedbyaglassenvelopetoreduceconvectionheatlosses. Asthename´omnidirectional´implies,thereceivercanacceptopticalinputfromanydirection.

 

 

Figure9.1 Linearomnidirectionalreceiver,(a)photographofoperationalreceiver;(b)sketchofreceiverassemblycross-section. CourtesyofSandiaNationalLaboratories.

 

Figure9.2isasketchofacavityreceiver. Thisisclearlynotanomnidirectionalreceiversincethelightmustenterthroughthecavityaperture(justinfrontoftheinnershieldforthisreceiver)tobeabsorbedonthecavitywalls(coiledtubesinthiscase).

 

 

Figure9.2 Cavity(focalplane)receiver. CourtesyofSandiaNationalLaboratories.

 

Typically,theplaneofthecavityapertureisplacednearthefocusoftheparabolaandnormaltotheaxisoftheparabola. Thussuchareceiverissometimescalledafocalplanereceiver. Althoughthecavitycouldbelinearandthususedwithaparabolictrough,acavityreceiverismostcommonlyusedwithparabolicdishes. Figure9.3isaphotographofthissameparabolicdishcavityreceiver.

 

 

Figure9.3  PhotographlookingintothecavityapertureofthereceiverofFigure9.2.CourtesyofSandiaNationalLaboratories

 

9.1.1  ReceiverSize

OmnidirectionalReceivers-TheappropriatesizeforanomnidirectionalreceiverwasdevelopedinChapter8. ThediameterofatubereceiverisΔrasdefinedinEquation(8.44)(and2r1 asshowninFigure9.1b). Areceiverofthissizeinterceptsallreflectedradiationwithinthestatisticalerrorlimitsdefinedbyn. Thisequationisreproducedhereasanaidtothereader.

 

                  (8.44)

 

wherepistheparabolicradius,nthenumberofstandarddeviations(i.e.definingthepercentofreflectedenergyintercepted),andσtot theweightedstandarddeviationofthe beamspreadangleforallconcentratorerrors,asdevelopedinSection8.4anddefinedbyEquation(8.43). 

 

Aswillbedescribedbelow,thevalueofn(i.e.thenumberofstandarddeviationsofbeamspreadinterceptedbyareceiverofsizeΔr),isdeterminedinanoptimizationprocessbasedonbalancingtheamountofinterceptedradiationandamountofheatlossfromthereceiver. Putinsimplifiedterms,alargerreceiverwillcapturemorereflectedsolarradiation,butwillloosemoreheatduetoradiationandconduction.

 

CavityReceivers-Theappropriatesizeofthecavityopening(i.e.itsaperture)isdeterminedusingthesameopticalprinciplesusedinthedevelopmentofEquation(8.44)butthenprojectingthereflectedimageontothefocalplanewherethereceiveraperturewillbelocated.

 

IfthebeamspreadduetoerrorsissmallinFigure9.4,theanglesα andβ areapproximately90degrees. Thustheprojectionoftheimagewidthontothefocalplaneis

 

           

                      (9.1)

 

SubstitutionintoEquation(8.44)yields

 

           

                                     (9.2)

 

Figure9.4 Sizingofcavityapertureconsideringbeamspreadingduetoerrors.

 

SelectionofConcentratorRimAngle-Itisinterestingtostudytheimpactofreceivertypeonthepreferredconcentratorrimangle. Thewholeideaofaconcentratoristoreflectthelightenergyincidentonthecollectorapertureontoassmallareceiveraspossibleinordertominimizeheatloss.

 

Figure9.5isaplotoftherelativeconcentrationratiosforbothcavitiesandomnidirectionalreceiversasafunctionofrimangle. TheconcentrationratioforthetwoconceptsistheratioofthecollectorapertureareadividedbytheareaoftheimageatthereceiverasdefinedbyEquations(8.44)and(9.2),respectively. Notethatthecurvefortheomnidirectionalreceiverincreasesuniformlyupto90degrees,whereasthecurveforthefocalplanereceiverincreasesuptoarimangleofabout45degreesandthendecreasesbecauseofthecosineψ terminthedenominatorsinEquations(9.9)and(9.10).

 

Figure9.5 Variationofgeometricconcentrationratiowithrimangle.

Theimpactofthisphenomenonisthatmostconcentratorswithanomnidirectionalreceiverhaverimanglesnear90degrees. Ontheotherhand,concentratorswithfocalplanereceivershaverimanglesnear45degrees. Thecurvesshowonlytrendsforeachreceivertype,andtheirmagnituderelativetoeachotherasshowninFigure9.5isnotcorrect.

 

9.1.2  ReceiverHeatLoss

LinearOmnidirectionalReceivers-TheheatlossratefromalinearomnidirectionalreceiverofthetypeshowninFigure9.1isequaltotheheatlossratefromtheoutsidesurfaceoftheglasstube. Thiscanbecalculatedasthesumoftheconvectiontotheenvironmentfromtheglassenvelopeplustheradiationfromtheglassenvelopetothesurroundings.

 

                   (9.3)

 

where:

hg=convectiveheat-transfercoefficientatoutsidesurfaceofglass

            envelope(W/m2°C)

Ag=outsidesurfaceofglassenvelope(m2)

Tg=outsidesurfacetemperatureofglassenvelope(K)

Ta=ambienttemperature(K)

σΒ  =Stefan-Boltzmannconstant(5.6696×10-8W/m2K4)

ε g=emittanceoftheglass

Fga=radiationshapefactor

Ts=skytemperature(K)(typicallyassumedtobe6Kelvinslowerthanambienttemperature)(Treadwell,1976)

 

Ifallthevariablescanbeeval

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1