高速铁路牵引供电系统组成.docx

上传人:b****3 文档编号:523865 上传时间:2022-10-10 格式:DOCX 页数:12 大小:129.26KB
下载 相关 举报
高速铁路牵引供电系统组成.docx_第1页
第1页 / 共12页
高速铁路牵引供电系统组成.docx_第2页
第2页 / 共12页
高速铁路牵引供电系统组成.docx_第3页
第3页 / 共12页
高速铁路牵引供电系统组成.docx_第4页
第4页 / 共12页
高速铁路牵引供电系统组成.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

高速铁路牵引供电系统组成.docx

《高速铁路牵引供电系统组成.docx》由会员分享,可在线阅读,更多相关《高速铁路牵引供电系统组成.docx(12页珍藏版)》请在冰豆网上搜索。

高速铁路牵引供电系统组成.docx

高速铁路牵引供电系统组成

高速铁路牵引供电系统(组成)

第一节高速铁路牵引供电系统

电气化铁路的组成

由于电力机车本身不带原动机,需要靠外部电力系统经过牵引供电装置供给其电能,故电气化铁路是由电力机车和牵引供电系统组成的。

牵引供电系统主要由牵引变电所和接触网两部分组成,所以人们又称电力机车、牵引变电所和接触网为电气化铁道的三大元件。

一、电力机车

(一)工作原理

电力机车靠其顶部升起的受电弓和接触网接触获取电能。

电力机车顶部都有受电弓,由司机控制其升降。

受电弓升起时,紧贴接触网线摩擦滑行,将电能引入机车,经机车主断路器到机车主变压器,主变压器降压后,经供电装置供给牵引电动机,牵引电动机通过传动机构使电力机车运行。

(二)组成部分

电力机车由机械部分(包括车体和转向架)、电气部分和空气管路系统构成。

车体是电力机车的骨架,是由钢板和压型梁组焊成的复杂的空间结构,电力机车大部分机械及电气设备都安装在车体内,它也是机车乘务员的工作场所。

转向架是由牵引电机把电能转变成机械能,便电力机车沿轨道走行的机械装置。

它的上部支持着车体,它的下部轮对与铁路轨道接触。

电气部分包括机车主电路、辅助电路和控制电路形成的全部电气设备,在机车上占的比重最大,除安装在转向架中的牵引电机之外,其余均安装在车顶、车内、车下和司机室内。

空气管路系统主要执行机车空气制动功能,由空气压缩机、气阀柜、制动机和管路等组成

(三)分类

干线电力牵引中,按照供电电流制分为:

直流制电力机车和交流制电力机车和多流制电力机车。

交流机车又分为单相低频电力机车(25Hz或162/3Hz)和单相工频(50Hz)电力机车。

单相工频电力机车,又可分为交--直传动电力机车和交—直—交传动电力机车。

二、牵引变电所

牵引变电所的主要任务是将电力系统输送来的110kV三相交流电变换为27.5(或55)KV单相电,然后以单相供电方式经馈电线送至接触网上,电压变化由牵引变压器完成。

电力系统的三相交流电改变为单相,是通过牵引变压器

 

一、牵引变电所高压进线的主接线方案

(一)牵引变电所主接线的要求

1、牵引变压器的接线方式不同,对主接线的影响较大。

2、在满足可靠性的情况下,应尽量采用简单的接线形式,一般一双T接线为主。

3、双T接线虽然要求双回路进线,但可根据电气化铁路的重要程度和运量大小而采用手动投入或自动投入备用回路。

当变电所的双回路进线中,主回路发生故障时,备用回路应投入。

当采用手动投入时,将有一段停电时间(几数分钟到几十分钟),但可使主接线简化,考虑到110kV线路故障率较低,而且220kV及更高系统逐步形成之情况下,这种接线方式得到了普遍应用。

4、对于重要电气化区段,可采用自动投入或双回路主供。

5、接触网的故障率较高,要求27.5kv侧馈线断路器能承受较高的跳闸次数或有足够的备用。

(二)单母线分段接线

1、单母线分段接线

当牵引变电所除了110kV两回电源引入线外,还有别的引出线的时候,通常采用此种方式。

正常运行时,分段断路器闭合,两母线并列运行,电源回路和同一负荷的馈线应交错连接在不同的分段母线上,分段断路器既能通过穿越功率,又可在必要的时候将母线分成两段,这样,当母线检修时,停电范围可缩小一半;母线故障时,分段断路器自动跳闸,将故障段母线断开,非故障段母线及其线路仍照常工作,仅使故障段母线连接的线路停电。

单母线分段的接线,广泛用于城市电牵引变电所和110Kv电源进线回路较少的电牵引供电系统。

2、单母线带旁路母线接线

单母线分段的接线虽然有上述优点,但是,还是存在断路器检修或故障时将使有关回路停电的缺陷,为此,增设一组旁路母线,组成带旁路母线的单母线接线即可解决这一矛盾。

(三)桥型接线

当110Kv侧有两回进线且需要穿越功率时,采用桥型接线。

1、内桥接线

内桥接线中带有隔离开关构成的外跨条,作为检修桥断路器时旁路用。

该接线的特点是线路中有一回故障,不影响供电。

但变压器故障时,造成线路中断。

考虑到变压器故障率比进线故障少,因此这种接线可加强牵引负荷供电的可靠性而对电力系统不会带来多大影响,目前采用较多。

由于解裂变压器也会造成线路中断,所以如需经常操作主变压器的场合,不宜采用内桥接线。

2、外桥接线

该接线的特点是变压器故障不影响线路,变压器的投入和切除方便,线路穿越功率只经过桥断路器,但线路故障时影响一台变压器的供电,这种接线往往用于电力系统中比较重要的系统联络线上。

 

(四)双T接线

双T接线是目前采用比较普遍的一种接线方式,它在变电所要求两回进线时采用。

一般情况下,其中一回引自电源点的专用间隔,另一回进线可从电力系统的各供电线路上连接。

双T接线比上述两种接线形式都简单,双回进线都在供电要求不高的场合,采用一回助攻,另一回备用。

若两回进线都能作主供回路,并能作为互为备用,则可消去外跨条,使接线更为简单。

在供电要求高的场合,应优先采用两回进线都能作为主供的方案。

 

二、

第五节高速铁路牵引供电系统介绍

由于电力机车功率大,拉的多,跑的快,世界各国的高速铁路几乎都采用电力机车牵引。

电力机车与蒸汽机车和内燃机车不同,它本身不带能源,必须由外部供应电能。

为了给电力机车供应电能,需要在铁路沿线架设一套牵引供电系统。

高速铁路的牵引供电系统,与常速铁路的牵引供电系统不同,它的供电能力和供电可靠性必须满足高速列车运行的要求。

自1964年10月1日,日本建成世界上第一条高速铁路以来,经过几十年的实践和发展,各国高速铁路的牵引供电系统都有了很大的改进,达到了很高的水平,而且都各具特色。

最具有代表性的是日本、法国和德国高速铁路的牵引供电系统。

高速铁路的牵引供电系统主要包括牵引供电和接触网两大部分。

下面就其采用的主要技术标准做一简单的介绍。

1.牵引供电部分

(1)牵引供电方式:

高速铁路要求接触网受流质过高,分段和分相点数量少。

目前各国大多采用自耦变压器(AT)供电方式和带回线的直接(RT)供电方式。

自耦变压器(AT)供电方式是每隔10km左右在接触网与正馈线之间并联接入一台自耦变压器,其中性点与钢轨相连。

自耦变压器将牵引网的供电电压提高一倍,而供给电力机车的电压仍为25kV,如图所示。

带回线的直接(RT)供电方式是在接触网支柱上架设一条与钢轨并联的回流线,如图所示,利用接触网与回流线之间的互感作用,使钢轨中的电流尽可能地由回流线流回牵引变电所,因而能部分抵消接触网对邻近通信线路的干扰。

 

自耦变压器(AT)供电方式

 

带回线的直接(RT)供电方式

日本、法国采用AT供电方式;德国、意大利和西班牙采用RT供电方式。

AT供电方式的优点是:

供电质量高,变电所数量少,便于牵引变电所选址和电力部门的配合,牵引变电所间距大、分相点少。

因此,便于高速列车运行,防干扰效果也好。

我国京沪高速铁路牵引供电优先采用2×25kV(AT)供电方式。

(2)电源电压等级:

高速铁路负荷电流大,对电力系统的不平衡影响也大。

为了减少对电力系统的影响,高速铁路一般都采用较高的电源电压。

日本采用154kV、220kV和275kV三种电压等级,法国采用225kV电压等级,德国采用110kV电压等级,意大利采用130kV电压等级,西班牙采用132kV和220kV两种电压等级。

(3)接触网电压:

接触网的电压对电力机车功率发挥及机车运行速度有很大影响,而且直接关系到牵引供电设备技术参数的选定和供电系统的工程投资,各国都非常重视这一技术标准。

日本接触网的标准电压为25kV,最高电压为30kV,最低电压为22.5kV。

法国分别为25kV、27.5kV和18kV。

德国分别为15kV、17kV和12kV。

西班牙分别为25kV、27.5kV和19kV。

意大利采用直流供电,分别为3kV、3.6kV和2kV。

我国京沪高速铁路接触网的标称电压为25kV,长期最高电压拟定为27.5kV,短时(5min)最高电压为29kV,设计最低工作电压为20kV。

(4)牵引变压器接线形式:

牵引变压器是牵引供电系统中最重要的设备。

它对牵引供电系统和工程投资起决定性的影响,不同类型的牵引变压器对电力系统产生不同的不平衡影响。

日本采用斯科特接线和变形伍德桥接线三相变压器。

法国、德国、意大利和西班牙采用单相变位器。

单相变压器的优点是变压器容量大、利用率高、经济效果好,最适合在高速铁路上应用。

我国京沪高速铁路应优先采用单相变压器。

(5)牵引变电所继电保护和自动控制装置:

日本、法国、德国及西班牙高速铁路的牵引变电所均按无人值班设计,采用运动装置在电力调度中心监控。

牵引变电所的继电保护和自动控制系统仍采用传统的控制保护盘方式,微机控制保护和全部自动化等技术都还没有采用。

但在保护系统的配置、继电器的特性、控制回路的联动等方面比较先进,系统的安全性和可靠性也比较高。

(6)电力调度和运动系统:

日本列车运行指挥中心集列车、车辆、信号、牵引供电、防灾报警、旅客服务等多种业务调度为一体,构成一个综合调度处理系统。

电力调度及运动是其中的一个子系统。

法国高速铁路的综合调度系统由行车调度和电力调度组成。

德国和西班牙高速铁路的牵引供电调度及运动系统则是一个设在调度中心的独立系统。

由调度所对高速线上所有开关设备和接触网柱上开关进行遥控。

为了便于列车调度指挥,电力调度和运动系统集中设在行车调度室内。

为2×27.5kV或27.5kV;接触网额定电压为25kV,长期最高电压为27.5kV,短时(5min)最高电压为29kV,设计最低工作电压为20kV。

9.接触网采用上、下行同相单边供电,供电臂末端设分区所,在正常情况下实现上、下行接触网并联供电,在事故情况下实现越区供电,允许全部列车在减速条件下通过。

当采用AT供电方式时,AT所处的上、下行接触网也实行并联。

10.供电设备的容量一般按近期客运量的高峰小时牵引负荷进行选择;接触网上行或下行单独供电时,应满足最低工作电压要求。

11.负序和谐波对电力系统的影响应符合有关标准的规定。

二、牵引网供电方式

京沪高速铁路是由不同速度等级的动车组混跑的客运专线(在近、远期逐步加大350km/h及以上动车组数量和运行范围),最高速度为350~380km/h的高速动车组采用大功率流线型交-直-交动车组。

AT供电方式具有适应高电能传输的能力,同时可以降低对接触悬挂载流量的要求和减轻牵引网电流密度,并有利于大运量客运专线接触网的轻型化和系统匹配设计。

牵引网供电方式采用AT供电方式后在供电能力、减少电分相、改善电磁环境和降低外部电源投资等方面的优势均比较明显,对于京沪高速铁路长距离、高速度、高密度和重负荷的情形尤其适宜;因此高速正线的牵引供电系统应采用2×25kVAT供电方式,枢纽地区高中速联络线、动车组走行线和动车段(所)等采用1×25kV带回流线的直接供电方式。

三、牵引变电所、开闭所、分区所和AT所分布

在京沪高速铁路的电气化工程中,牵引变电所(SS)、开闭所(SSP)、分区所(SP)和AT所(ATP)的分布方案除根据上述主要设计原则及技术条件外,还应考虑负荷特点、变电设施规模和牵引网结构等。

由于京沪高速铁路的高、中速列车均采用交-直-交动车组,列车在各种工况下的功率因数较高,牵引网末端电压水平不再是制约牵引变电所间距的主要因素;而牵引网各导体的载流量和电力系统的负序承受能力成为限制牵引变电所间距的主要因素。

根据前期牵引计算及方案论证的结论,京沪高速铁路全线分别在李营(北京动车段)、魏善庄、豆张庄、华苑、唐官屯、沧州、东光、德州、禹城、济南、泰山、王庄、东郭、周营、徐州、桃沟、固镇、蚌埠、桑涧、滁州、南京南、下蜀、丹阳、郑陆、无锡、昆山和虹桥设27座牵引变电所,在每座牵引变电所内均不设自耦变压器。

在AT供电区段的分区所内设置上、下行自耦变压器,且自耦变压器互为备用;在AT供电区段内,各牵引变电所的左右供电臂中间附近共设50处AT所,AT所

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1