所以,维纳的年龄应是18。
7.把1,2,3,4……1986,1987这1987个自然数均匀排成一个大圆圈,从1开始数:
隔过1划2,3;隔过4划掉5,6,这样每隔一个数划掉两个数,转圈划下去,问:
最后剩下哪个数。
解答:
663
8.在一幅长90厘米,宽40厘米的风景画的四周外围向上一条宽度相同的金色纸边,制成一幅挂图,如果要求风景画的面积是整个挂图面积的百分之72,那么金色纸边的宽应为多少?
解答:
根据题意有(90+2X)(40+2X)*72%=90*40
(90+2X)(40+2X)=3600/0.72
3600+180X+80X+4X2=5000
4X2+260X-1400=0
(4X-20)(X+70)=0
得4x-20=0X+70=0
4*x=20X=5
X=-70不成立
所以X=5CM
9.用黑白两种颜色的皮块缝制而成的足球,黑色皮块是正五边形,白色皮块是正六边形,若一个球上共有黑白皮块32块,请计算,黑色皮块和白色皮块的块数
解答:
等量关系:
白色皮块中与黑色皮块中共用的边数=黑色皮块中与白色皮块共用的边数
设:
有白色皮块x
3x=5(32-x)
解得x=20
10.抽屉中有十只相同的黑袜子和十只相同的白袜子,假若你在黑暗中打开抽屉,伸手拿出袜子,请问至少要拿出几只袜子,才能确定拿到了一双?
解答:
3
11.小赵,小钱,小孙,小李4人讨论一场足球赛决赛究竟是哪个队夺冠。
小赵说:
“D对必败,而C队能胜。
”小钱说:
“A队,C队胜于B队败会同时出现。
”小孙说:
“A队,B队C队都能胜。
”小李说:
“A队败,C队,D队胜的局面明显。
”
他们的话中已说中了哪个队取胜,请问你猜对究竟哪个队夺冠吗?
解答:
小赵,小钱,小孙,小李4人讨论一场足球赛决赛究竟是哪个队夺冠。
小赵说:
“D对必败,而C队能胜。
”小钱说:
“A队,C队胜与B队败会同时出现。
”小孙说:
“A队,B队C队都能胜。
”小李说:
“A队败,C队,D队胜的局面明显。
”
小赵的话说明D队败
小钱的话说明B队败
小孙的话说明D队败
小李的话说明A队败
所以,C队胜利
12.如果长度为a,b,c的三条线段能够成三角形,那麽线段根号a,根号b,根号c是否能够成三角形?
如果一定能构成或一定不能构成,请证明
如果不一定能够,请举例说明.
解答:
可以。
不妨假设a最小,c最大,那么abc构成三角形的充要条件就是a+b>c;
这时√a+√b与√c比较,其实就是a+b+2√ab与c比较(两边平方),a+b已经大于c了,那么显然可以构成三角形。
13.有一位农民遇见魔鬼,魔鬼说:
"我有一个主意,可以让你发财!
只要你从我身后这座桥走过去,你的钱就会增加一倍,走回来又会增加一倍,每过一次桥,你的钱都能增加一倍,不过你必须保证每次在你的钱数加倍后要给我a个钢板,农民大喜,马上过桥,三次过桥后,口袋刚好只有a个钢板,付给魔鬼,分文不剩,请有含a的单项式表示农民最初口袋里的钢板数。
解答:
设最初钱数为x
2[2(2x-a)-a]-a=0
解方程得x=7a/8
14.三个同学放学回家,途中见到一辆黄色汽车,等他们再往前走时,听说那辆车撞伤一位老人后竟然逃之夭夭.可是谁也没记下这辆汽车的车牌号.警察询问这三个中学生时,他们都说车牌号是一个四位数.其中一个记得这个号码的前两位相同,另一个记得这个号码的后两位数字相同,第三个记得这个四位数恰好是完全平方数,你能确定这辆肇事汽车的车牌号吗
解答:
四位数可以表示成
a×1000+a×100+b×10+b
=a×1100+b×11
=11×(a×100+b)
因为a×100+b必须被11整除,所以a+b=11,带入上式得
四位数=11×(a×100+(11-a))
=11×(a×99+11)
=11×11×(9a+1)
只要9a+1是完全平方数就行了。
由a=2、3、4、5、6、7、8、9验证得,
9a+1=19、28、27、46、55、64、73。
所以只有a=7一个解;b=4。
因此四位数是7744=11^2×8^2=88×88
15.已知1加3等于4等于2的2次方,1加3加5等于9等于3的2次方,1加3加5加7=16等于4的2次方,1加3加5加7加9等于25等于5的2次方,等......
<1>仿照上例,计算1加2加3加5加7加...加99等于?
<2>根据上面规律,请用自然数n(n大于等于1)表示一般规律。
解答:
<1>1+3+5+...+99=50的平方
<2>1+3+5+...+n=[(n-1)/2+1]的平方
16.有一次,一只猫抓了20只老鼠,排成一列。
猫宣布了它的决定:
首先将站在奇数位上的老鼠吃掉,接着将剩下的老师重新按1、2、3、4…编号,再吃掉所有站在奇数位上的老鼠。
如此重复,最后剩下的一只老鼠将被放生。
一只聪明的老鼠听了,马上选了一个位置,最后剩下的果然是它,猫将它放走了!
你知道这只聪明的小老鼠站的是第几个位置吗?
解答:
排在第16个。
第1次能被2整除的剩下了,第2次能被4(2的平方)整除的剩下了,第3次能被8(2的3次方)整除的剩下了,第4次能被16(2的4次方)整除的剩下了,所以只有第16个不会被吃掉。
17.1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+…+1/(98*99*100)
解答:
1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+…+1/(98*99*100)
=(1-1/2-1/3)+(1/2-1/3-1/4)+(1/3-1/4-1/5)+......1/98-1/99-1/100
=1-1/100
=99/100
备注:
1/(1*2*3)=1-1/2-1/3
18.小伟和小明交流暑假中的活动情况,小伟说:
“我参加了科技夏令营,外出一个星期,这七天的日期数之和是84,你知道我是几号出发的吗?
”小明说:
“我假期到舅舅家住了七天,日期数的和再加月份数也是84,你能猜出我是几月几号回家的吗?
解答:
第一题:
设出发那天为X号
X+X+1+X+2+X+3+X+4+X+5+X+6=84
X=9
小伟是9号出发的。
第二题:
因为是暑假里的活动,所以只能是7或者8月份
设回来那天为X号
列示为
7+X+X-1+X-2+X-3+X-4+X-5+X-6=84
或者
8+X+X-1+X-2+X-3+X-4+X-5+X-6=84
第一式解出X=14
第二式结果不为整数
所以只能是7月14号到家
19.某校初一有甲、乙、丙三个班,甲班比乙班多4个女生,乙班比丙班多1个女生,如果将甲班的第一组同学调入乙班,同时将乙班的第一组同学调入丙班,同时将丙班的第一组同学调入甲班,则三个班的女生人数恰好相等。
已知丙班第一组有2名女生,问甲、乙两班第一组各有多少女生?
解答:
设甲乙两班第一组的女生分别有m和n个丙班女生有x个乙班就有x+1个,甲班就有x+5个平均x+2个(利用改变量来计算)丙班:
-2+n=(x+2)-x
甲班:
+2-m=(x+2)-(x+5)可以得出m=5n=4
20.有一水库,在单位时间内有一定量的水流量,同时也向外放水。
按现在的放水量,水库中的水可使用40天。
因最近库区降雨,使流入水库的水量增加20%,如果放水量也增加10%,那么仍可使用40天。
问:
如果按原来的放水量放水,可使用多少天?
解答:
设水库总水量为x一天的进水量和出水量分别为m和n
则有x/(n-m)=40=x/[n(1+10%)-m(1+20%)]要求x/[n-m(1+20%)]
可以先化简得n=2mx=40m带入第二个式子即可得到x=50天
21.某宾馆先把甲乙两种空调的温度设订为1度,结果甲种空调比乙种空调每天多节电27度再对乙种空调进行清洗设备,使得乙种空调每天的总节电量是只将温度调高1度后的节电量的1.1倍而甲种空调的节电量不变这样两种空调每天共节电405度求只将温度条调高1度后两种空调每天共节电多少度?
解答:
设只将温度调高1度后,甲乙两种空调每天各节电X,Y度
X-Y=27,
X+1.1Y=405
X=207
Y=180
甲乙两种空调每天各节电207,180度.
22.红棉村有1000公顷荒山,绿化率达80%,300公顷良田不需要绿化,今年X公顷河坡地植树绿化率达20%,这样红棉村所有土地的绿化率就达到60%,河坡地共有多少公顷?
解答:
(x*20%+1000*80%)/(1000+300+x)=60%
(0.2*x+800)/(1300+x)=0.6
0.2*x+800=780+0.6*x
x=50公顷
23.一张纸厚0.06厘米,地球到月球的距离是3.85*10^5千米.
小明说,如果将这张纸裁成两等份,把裁成两等份的纸摞起来,再裁两等份,如果重复下去,所有纸的高度大于月球到地球的距离.
小刚说,我不信小明的说法.
小明的说法是对的吗?
为什么?
解答:
裁40次就高于3.85*10^5千米
2^40*0.06/100000=6.597*10^5千米
小明的说法是对,只是这张纸一定要够大,要不能裁了几次就裁不了
24.有27颗珍珠,其中一颗是假的,但外观和真的一样,只是比真的珍珠轻一点.问:
最少用天平称几次(不用砝码),就一定可以把假的珍珠找出来?
解答:
3次
第一次把27颗珍珠分成3等份,取其中2份放天平两端称量,如果天平偏斜,则考虑轻的那9颗珍珠,如果不偏斜,则考虑没有称量的那9颗;同理,将这9颗珍珠再分成3等份,,取其中2份放天平两端称量,再次得到3颗"可疑"的珍珠,取出两颗称量,如果天平偏斜,则轻的是次品~否则没称量的是次品
25.埃及同中国一样,也是世界上著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为1的分数,例如用1/3+1/15表示2/5,用1/4+1/7+1/28来表示3/7等等,现在用90个埃及分子1/2,1/3,1/4,1/5,......。
1/90。
1/91,其中是否再10个数,加上正负号后使它们的和为-1,若存在,请写出这10个数,若不存在,请说明理由。
解答:
一解:
-1=-1/5-1/6-1/8-1/9-1/10-1/12-1/15-1/18-1/20-1/24
二解:
1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10=1-1/10
所以:
1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90+1/10=1
即:
-1/2-1/6-1/12-1/20-1/30-1/42-1/56-1/72-1/90-1/10=-1
24道经典名题
1.不说话的学术报告1903年10月,在美国纽约的一次数学学术会议上,请科尔教授作学术报告。
他走到黑板前,没说话,用粉笔写出2^67-1,这个数是合数而不是质数。
接着他又写出两组数字,用竖式连乘,两种计算结果相同。
回到座位上,全体会员以暴风雨般的掌声表示祝贺。
证明了2自乘67次再减去1,这个数是合数,而不是两百年一直被人怀疑的质数。
有人问他论证这个问题,用了多长时间,他说:
“三年内的全部星期天”。
请你很快回答出他至少用了多少天?
2.国王的重赏传说,印度的舍罕国王打算重赏国际象棋的发明人——大臣西萨•班•达依尔。
这位聪明的大臣跪在国王面敢说:
“陛下,请你在这张棋盘的第一个小格内,赏给我一粒麦子,在第二个小格内给两粒,在第三个小格内给四粒,照这样下去,每一小格内都比前一小格加一倍。
陛下啊,把这样摆满棋盘上所有64格的麦粒,都赏给您的仆人吧?
”国王说:
“你的要求不高,会如愿以偿的”。
说着,他下令把一袋麦子拿到宝座前,计算麦粒的工作开始了。
……还没到第二十小格,袋子已经空了,一袋又一袋的麦子被扛到国王面前来。
但是,麦粒数一格接一格地增长得那样迅速,很快看出,即使拿出来全印度的粮食,国王也兑现不了他对象棋发明人许下的语言。
算算看,国王应给象棋发明人多少粒麦子?
3.王子的数学题传说从前有一位王子,有一天,他把几位妹妹召集起来,出了一道数学题考她们。
题目是:
我有金、银两个手饰箱,箱内分别装自若干件手饰,如果把金箱中25%的手饰送给第一个算对这个题目的人,把银箱中20%的手饰送给第二个算对这个题目的人。
然后我再从金箱中拿出5件送给第三个算对这个题目的人,再从银箱中拿出4件送给第四个算对这个题目的人,最后我金箱中剩下的比分掉的多10件手饰,银箱中剩下的与分掉的比是2∶1,请问谁能算出我的金箱、银箱中原来各有多少件手饰?
4.公主出题古时候,传说捷克的公主柳布莎出过这样一道有趣的题:
“一只篮子中有若干李子,取它的一半又一个给第一个人,再取其余一半又一个给第二人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?
”
5.哥德巴赫猜想哥德巴赫是二百多年前德国的数学家。
他发现:
每一个大于或等于6的偶数,都可以写成两个素数的和(简称“1+1”)。
如:
10=3+7,16=5+11等等。
他检验了很多偶数,都表明这个结论是正确的。
但他无法从理论上证明这个结论是对的。
1748年他写信给当时很有名望的大数学家欧拉,请他指导,欧拉回信说,他相信这个结论是正确的,但也无法证明。
因为没有从理论上得到证明只是一种猜想,所以就把哥德巴赫提出的这个问题称为哥德巴赫猜想。
世界上许多数学家为证明这个猜想作了很大努力,他们由“1+4”→“1+3”到1966年我国数学家陈景润证明了“1+2”。
也就是任何一个充分大的偶数,都可表示成两个数的和,其中一个是素数,另一个或者是素数,或者是两个素数的积。
你能把下面各偶数,写成两个素数的和吗?
(1)100=
(2)50=(3)20=
6.贝韦克的七个7二十世纪初英国数学家贝韦克友现了一个特殊的除式问题,请你把这个特殊的除式填完整。
7.刁藩都的墓志铭刁藩都是公元后三世纪的数学家,他的墓志铭上写到:
“这里埋着刁藩都,墓碑铭告诉你,他的生命的六分之一是幸福的童年,再活了十二分之一度过了愉快的青年时代,他结了婚,可是还不曾有孩子,这样又度过了一生的七分之一;再过五年他得了儿子;不幸儿子只活了父亲寿命的一半,比父亲早死四年,刁藩都到底寿命有多长?
8.遗嘱传说,有一个古罗马人临死时,给怀孕的妻子写了一份遗嘱:
生下来的如果是儿子,就把遗产的2/3给儿子,母亲拿1/3;生下来的如果是女儿,就把遗产的1/3给女儿,母亲拿2/3。
结果这位妻子生了一男一女,怎样分配,才能接近遗嘱的要求呢?
9.布哈斯卡尔的算术题公园里有甲、乙两种花,有一群蜜蜂飞来,在甲花上落下1/5,在乙花上落下1/3,如果落在两种花上的蜜蜂的差的三倍再落在花上,那么只剩下一只蜜蜂上下飞舞欣赏花香,算算这里聚集了多少蜜蜂?
10.马塔尼茨基的算术题有一个雇主约定每年给工人12元钱和一件短衣,工人做工到7个月想要离去,只给了他5元钱和一件短衣。
这件短衣值多少钱?
11.托尔斯泰的算术题俄国伟大的作家托尔斯泰,曾出过这样一个题:
一组割草人要把二块草地的草割完。
大的一块比小的一块大一倍,上午全部人都在大的一块草地割草。
下午一半人仍留在大草地上,到傍晚时把草割完。
另一半人去割小草地的草,到傍晚还剩下一块,这一块由一个割草人再用一天时间刚好割完。
问这组割草人共有多少人?
(每个割草人的割草速度都相同)
12.涡卡诺夫斯基的算术题
(一)一只狗追赶一匹马,狗跳六次的时间,马只能跳5次,狗跳4次的距离和马跳7次的距离相同,马跑了5.5公里以后,狗开始在后面追赶,马跑多长的距离,才被狗追上?
13.涡卡诺夫斯基的算术题
(二)有人问船长,在他领导下的有多少人,他回答说:
“2/5去站岗,2/7在工作,1/4在病院,27人在船上。
”问在他领导下共有多少人?
14.数学家达兰倍尔错在哪里传说18世纪法国有名的数学家达兰倍尔拿两个五分硬币往下扔,会出现几种情况呢?
情况只有三种:
可能两个都是正面;可能一个是正面,一个是背面,也可能两个都是背面。
因此,两个都出现正面的概率是1∶3。
你想想,错在哪里?
15.埃及金字塔世界闻名的金字塔,是古代埃及国王们的坟墓,建筑雄伟高大,形状像个“金”字。
它的底面是正方形,塔身的四面是倾斜着的等腰三角形。
两千六百多年前,埃及有位国王,请来一位名子叫法列士的学者测量金字塔的高度。
法列士选择一个晴朗的天气,组织测量队的人来到金字塔前。
太阳光给每一个测量队的人和金字塔都投下了长长的影子。
当法列士测出自己的影子等于它自己的身高时,便立即让助手测出金字塔的阴影长度(CB)。
他根据塔的底边长度和塔的阴影长度,很快算出金字塔的高度。
你会计算吗?
16.一笔画问题在18世纪的哥尼斯堡城里有七座桥。
当时有很多人想要一次走遍七座桥,并且每座桥只能经过一次。
这就是世界上很有名的哥尼斯堡七桥问题。
你能一次走遍这七座桥,而又不重复吗?
17.韩信点兵传说汉朝大将韩信用一种特殊方法清点士兵的人数。
他的方法是:
让士兵先列成三列纵队(每行三人),再列成五列纵队(每行五人),最后列成七列纵队(每行七人)。
他只要知道这队士兵大约的人数,就可以根据这三次列队排在最后一行的士兵是几个人,而推算出这队士兵的准确人数。
如果韩信当时看到的三次列队,最后一行的士兵人数分别是2人、2人、4人,并知道这队士兵约在三四百人之间,你能很快推算出这队士兵的人数吗?
18.共有多少个桃子著名美籍物理学家李政道教授来华讲学时,访问了中国科技大学,会见了少年班的部分同学。
在会见时,给少年班同学出了一道题:
“有五只猴子,分一堆桃子,可是怎么也平分不了。
于是大家同意先去睡觉,明天再说。
夜里一只猴子偷偷起来,把一个桃子扔到山下后,正好可以分成五份,它就把自己的一份藏起来,又睡觉去了。
第二只猴子爬起来也扔了一个桃子,刚好分成五份,也把自己那一份收起来了。
第三、第四、第五只猴子都是这样,扔了一个也刚好可以分成五份,也把自己那一份收起来了。
问一共有多少个桃子?
注:
这道题,小朋友们可能算不出来,如果我给增加一个条件,最后剩下1020个桃子,看谁能算出来。
19.《九章算术》里的问题《九章算术》是我国最古老的数学著作之一,全书共分九章,有246个题目。
其中一道是这样的:
一个人用车装米,从甲地运往乙地,装米的车曰行25千米,不装米的空车曰行35千米,5日往返三次,问二地相距多少千米?
20.《张立建算经》里的问题《张立建算经》是中国古代算书。
书中有这样一题:
公鸡每只值5元,母鸡每只值3元,小鸡每三只值1元。
现在用100元钱买100只鸡。
问这100只鸡中,公鸡、母鸡、小鸡各有多少只?
21.《算法统宗》里的问题《算法统宗》是中国古代数学著作之一。
书里有这样一题:
甲牵一只肥羊走过来问牧羊人:
“你赶的这群羊大概有100只吧”,牧羊人答:
“如果这群羊加上一倍,再加上原来这群羊的一半,又加上原来这群羊的1/4,连你牵着的这只肥羊也算进去,才刚好凑满一百只。
”请您算