毕业设计 外文翻译.docx

上传人:b****6 文档编号:4958164 上传时间:2022-12-12 格式:DOCX 页数:31 大小:625.34KB
下载 相关 举报
毕业设计 外文翻译.docx_第1页
第1页 / 共31页
毕业设计 外文翻译.docx_第2页
第2页 / 共31页
毕业设计 外文翻译.docx_第3页
第3页 / 共31页
毕业设计 外文翻译.docx_第4页
第4页 / 共31页
毕业设计 外文翻译.docx_第5页
第5页 / 共31页
点击查看更多>>
下载资源
资源描述

毕业设计 外文翻译.docx

《毕业设计 外文翻译.docx》由会员分享,可在线阅读,更多相关《毕业设计 外文翻译.docx(31页珍藏版)》请在冰豆网上搜索。

毕业设计 外文翻译.docx

毕业设计外文翻译

淮阴工学院

毕业设计(论文)外文资料翻译

学院:

建筑工程学院

专业:

土木工程

姓名:

金波

学号:

1121401112

外文出处:

JCENTSOUTHUNIVT

(用外文写)

附件:

1.外文资料翻译译文;2.外文原文。

 

指导教师评语:

译文语句通顺,词能达意,具有较好的翻译能力,译文质量较高。

签名:

(手写签名)

注:

请将该封面与附件装订成册。

附件2:

外文原文

 

J.Cent.SouthUniv.(2015)22:

2730−2738

DOI:

10.1007/s11771-015-2803-4

Progressivecollapseresistingcapacityofreinforcedconcreteloadbearingwallstructures

AlirezaRahai1,AlirezaShahin1,FarzadHatami2

1.DepartmentofCivilEngineering,AmirkabirUniversityofTechnology(TehranPolytechnic)No.424,

HafezAve.,P.O.Box.15875-4413,Tehran,Iran;

2.Structural&EarthquakeResearchCenter(SERC),AmirkabirUniversityofTechnologyNo.424,

HafezAve.,P.O.Box.15875-4413,Tehran,Iran

©CentralSouthUniversityPressandSpringer-VerlagBerlinHeidelberg2015

Abstract:

Reinforcedconcrete(RC)loadbearingwalliswidelyusedinhigh-riseandmid-risebuildings.Duetothenumberofwallsinplanandreductioninlateralforceportion,thissystemisnotonlystrongeragainstearthquakes,butalsomoreeconomical.Theeffectofprogressivecollapsecausedbyremovalofloadbearingelements,invariouspositionsinplanandstoriesoftheRCloadbearingwallsystemwasevaluatedbynonlineardynamicandstaticanalyses.Forthispurpose,three-dimensionalmodelof10-storystructurewasselected.Theanalysisresultsindicatedstability,strengthandstiffnessoftheRCload-bearingwallsystemagainstprogressivecollapse.Itwasobservedthatthemostcriticalconditionforremovalofloadbearingwallswastheinstantaneousremovalofthesurroundingwallslocatedatthecornersofthebuildingwherethesectionsoftheloadbearingelementswerechanged.Inthiscase,themaximumverticaldisplacementwaslimitedto6.3mmandthestructurefailedafterapplyingtheloadof10timestheaxialloadboredbyremovedelements.Comparisonbetweentheresultsofthenonlineardynamicandstaticanalysesdemonstratedthatthe“loadfactor”parameterwasareasonablecriteriontoevaluatetheprogressivecollapsepotentialofthestructure.

Keywords:

reinforcedconcrete(RC)loadbearingwallstructure;progressivecollapse;fibersections;nonlinearanalysis;loadfactormethod

 

1Introduction

Thereinforcedconcrete(RC)loadbearingwallsystemisoneofthemostappropriatestructuralsystemsformid-risebuildings,whichresultsinthereductionofconstructionalmaterialinadditiontoimprovedstrengthagainstearthquakes.Indeed,duetothedirectconnectionofslabtowallanditslargeconnectionzone,transmissionofforcesincreasesandstressconcentrationatthejointswillbegreatlyreduced.Inaddition,intersectionofthewallsincreasesstructureindeterminacyandprovidesstabilityandgoodseismicperformance.

Progressivecollapsemayhappenduetoexplosion,fire,earthquake,vehiclecollision,errorsindesignandconstructionofbuildingswithanysystemtype.Thiscanbecausedbythefailureandinstabilityinasmallpartofthestructurewhichgraduallydevelopsasachainfunctionandeventuallyleadstothecollapseofanimportantpartofthestructure.Whenthemainloadbearingelementsinbuildingsaredestroyed,theattachedelementstothedamagedonelosetheirsupportandthe

forcewhichwasboredbythedamagedelementwillberedistributedwithinthestructure.Ifthestructurecouldnotreachanewstaticequilibriumcondition,theinitialcollapsewillleadtoinstabilityanddestructioninalargepart,andthesystemwillloseitsexpectedserviceandperformancelevel.Therefore,byprogressivecollapseanalysisofthestructures,criticalelementsandweaknessesofthesystemsagainstaccidentalloadscanbedetectedandbystrengtheningthemandmakingalternativeloadpaths,structuresstabilityandresidentssafetyareinsured;whilestandardsandregulationsforanalysisanddesignofstructuresagainstprogressivecollapsehavebeenprovidedbyprofessionalorganizationsaroundtheworld.GSA[1]andUFC[2]arethemostpopular.

Alargenumberofresearchershavestudiedtheprogressivecollapsephenomenainreinforcedconcretestructures.Theyinvestigatedthevalidityandapplicabilityofthevariousanalysismethodsforaccuratepredictionofprogressivecollapseindifferentstructuralsystems.Suddenloadbearingelementlossisacommonmethodwidelyusedtoevaluatetheprogressivecollapsepotentialofstructures[3].LUetal[4]investigatedthepotential

Receiveddate:

2014−08−22;Accepteddate:

2015−01−24

Correspondingauthor:

FarzadHatami,AssistantProfessor;Tel:

+98−2164545536;E-mail:

hatami@aut.ac.ir

J.Cent.SouthUniv.(2015)22:

2730−2738

2731

thepotentialofprogressivecollapseinRCmomentframestructuresusingpushdownanalysis.FollowingthesimultaneousremovaloftwoadjacentexteriorcolumnsinthefirststoryoftheHotelSanDiego,SASANI[5]evaluatedtheresponseofthesix-storyreinforcedconcreteinfilled-framestructure.KIMandJUNG[6]studiedthebehavioroftiltedbuildingstructuresandprovedtheirvulnerabilitytoprogressivecollapsecomparedtocommonstructures.Sometimes,progressivecollapseistriggeredbyconsecutiveremovalofseveralloadbearingelements.Soastoenablecommonmacromodelingprogramstomodelsuchscenarios,PACHENARIandKERAMATI[7]presentedamethodformodelingsuccessiveremovalofcolumnsusingaseriesofsubsequentanalyses.Theystatedthatthemethodcouldbeaprerequisiteofdefiningmorerealisticcollapsescenariosinrelevantguidelines.Bydouble-designingaframe-wallstructurewiththisassumptionthatithadhighorlowdesignoflateralloadsandbyremovinganexternalwallinthefirststory,BAOandKUNNATH[8]concludedthatfurtherdesignoflateralloadsleadstomoreprogressivecollapseresistanceandlessverticaldisplacementoftheupperjointoftheremovedwall.PACHENARIandKERAMATI[9]introducedrelevantbeam–slabcollapsemodesoftheimpactedstoryinthecasethatcolumnlossscenariocausesadjoiningpanelstofalldowninatwo-wayslabreinforcedconcretestructure.Theyconcludedthattheratioofbeamtoslabflexuralstrengthandexistingdeadandliveloadsonpanelsinthevicinityofimpactedpanelscouldchangethecollapsepatternandsubsequentlycontroltheprevailingcollapsemode.

However,noresearchhasbeenconductedyettoinvestigatetheprogressivecollapsepotentialofthree-dimensionalRCloadbearingwallstructures.Thus,inthisworkthebehavioroftheRCloadbearingwallsystemagainstprogressivecollapseisexaminedbyusingnonlineardynamicandstaticanalyses.

2Validation

Toensuretheaccuracyofmodelingbythefibersectionmethod,theanalysisresultsofthePERFORM3DmodelwerevalidatedbyaRCloadbearingwallspecimen(THOMSENandWALLACE[10]).Thistest

wasperformedtoevaluatethebehaviorofslenderRCwallsundersimultaneousgravityandlateralloads.

2.1Detailsoftestspecimen

Thewallspecimeninvestigatedwas1/4scaledwithheightof3660mm.Figure1showsthecrosssectionofthewallandreinforcementdetails.Bytwohydraulicjacksthatwereinstalledonthetopofthewall,anaxialloadofapproximately0.07Agfc'wasapplieduniformlyandconstantlythroughouttheexperiment.Ahydraulicactuatorwhichwasmountedhorizontallyinthecornerofthehighestlevelofthewallwasusedtoapplylateralperiodicandincrementaldrift(Fig.2).

Modelingandcomparisonofanalyticalandexperimentalresults

Duetothetwo-dimensionalanalysis,translations

androtationsnormaltothewallplainwerepreventedandallthewalljointswereconstrainedtothediaphragmforin-plaindisplacements.Wallsupportswereassumedtoberestrained.Nonlinearpropertiesofthewallweredefinedbyfibersectionsandassigningnonlinearmaterialstress-straincurvestothesefibers.Basiccalibratedparametersindefiningthematerialstress−straincurvearepresentedinTable1.RelationsproposedbyMANDERetal[11]wereusedindefiningthestress−straincurveofconcrete.Itshouldbenotedthatthestress−straincurveofconfinedconcretewasassignedtoconcretefibersofthewallboundaryandstress−straincurveofunconfinedconcretewasassignedtoconcretefibersofthewallweb.

Nonlinearstaticanalysis(Pushover)wasperformedintwosteps:

Step1):

Theaxialloadwasappliedtothewall.Step2):

Byholdingtheaxialloadconstantandwith

initialconditionsofthepreviousstep,thelateralloadwasappliedincrementallyandincreasedstepbystepuntildisplacementofthehighestlevelreachedthetargetdisplacement.

Toobtainthecyclicbehaviorandhysteresisloopsofthewall,nonlineardynamicanalysiswasperformedfollowingtheseprocedures:

Theaxialloadwasappliedtothewall.

Byholdingtheaxialloadconstantandwithinitialconditionsofthepreviousstep,thelateral

 

Fig.1Reinforcingdetailsofsecimen(THOMSENandWALLACE[10])

2732J.Cent.SouthUniv.(2015)22:

2730−2738

 

Fig.2Applieddisplacementhistory[10]

displacementrecordwasappliedtothewallbyaspringelement.Thiselementhadtobeverystiffversusstructurestiffnessandonlytransitionalstiffnesshadtobeconsidered.

Figure3comparestheresultsoftheanalyticalandexperimentalmodels.Theanalyticalmodelcapturedthemeasuredresponsereasonablywell.Theanalysisresultsclearlyreflectedactualcharacteristicsofcyclicwallresponse,includingstiffnessdegradation,shapeofthe

load-displacementhysteresisloopsandplastic(residual)displacementsatzeroloads.Thelateralcapacityofthewallwaspredictedverycloselyformostofthelateraldriftlevels.Itshowsthatthemodelingofloadbearingwallsections

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高等教育 > 军事

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1